

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	spykeutils 0.2.0 documentation

Welcome to the documentation of spykeutils!

Based on the Neo [http://neo.readthedocs.org] framework,
spykeutils is a Python library for analyzing and plotting neurophysiological
data. It can be used by itself or in conjunction with
Spyke Viewer [http://spyke-viewer.readthedocs.org], a
multi-platform GUI application for navigating electrophysiological datasets.

Contents:

	Requirements

	Download and Installation

	Usage

	Examples
	Creating the sample data

	PSTH

	Spike Density Estimation

	Signal Plot

	API reference
	spykeutils package

	Subpackages

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	spykeutils 0.2.0 documentation

Requirements

Spykeutils is a pure Python package and therefore easy to install. It depends
on the following additional packages:

	Python [http://python.org/] >= 2.7

	neo [http://neo.readthedocs.org/] >= 0.2.2

	scipy [http://scipy.org/]

	guiqwt [http://packages.python.org/guiqwt/] (Optional, for plotting)

	tables [http://www.pytables.org/] (Optional, for analysis results data management. Also known as
PyTables.)

Please see the respective websites for instructions on how to install them if
they are not present on your computer.

Note

The current version of Neo in the Python Package Index contains
some bugs that prevent it from working properly with spykeutils in some
situations. Please install the latest version directly from GitHub:
https://github.com/rproepp/python-neo

You can download the repository from the GitHub page or clone it using
git and then install from the resulting folder:

$ python setup.py install

Download and Installation

The easiest way to get spykeutils is from the Python Package Index.
If you have pip [http://pypi.python.org/pypi/pip] installed:

$ pip install spykeutils

Alternatively, if you have setuptools [http://pypi.python.org/pypi/setuptools]:

$ easy_install spykeutils

Alternatively, you can get the latest version directly from GitHub at
https://github.com/rproepp/spykeutils.

The master branch (selected by default) always contains the current stable
version. If you want the latest development version (not recommended unless
you need some features that do not exist in the stable version yet), select
the develop branch. You can download the repository from the GitHub page
or clone it using git and then install from the resulting folder:

$ python setup.py install

Usage

For the most part, spykeutils is a collection of functions that work on
Neo objects. Many functions also take quantities as parameters. Therefore,
make sure to get an overview of neo [http://neo.readthedocs.org/en/latest/index.html#neo] and quantities [http://packages.python.org/quantities/user/tutorial.html#quantities] before using
spykeutils. Once you are familiar with these packages, have a look at the
Examples or head to the API reference to browse the contents of
spykeutils.

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	spykeutils 0.2.0 documentation

Examples

These examples demonstrate the usage of some functions in spykeutils. This
includes the creation of a small Neo object hierarchy with toy data.

Creating the sample data

The functions in spykeutils work on electrophysiological data that is
represented in Neo object hierarchies. Usually, you would load these objects
from a file, but for the purpose of this demonstration we will manually create
an object hierarchy to illustrate their structure. Note that most functions
in spykeutils will also work with separate Neo data objects that are not
contained in a complete hierarchy. First, we import the modules we will use:

>>> import quantities as pq
>>> import neo
>>> import scipy as sp

We start with some container objects - two segments that represent trials and
two units (representing neurons) that produced the spike trains:

>>> segments = []
>>> segments.append(neo.Segment('Trial 1'))
>>> segments.append(neo.Segment('Trial 2'))
>>> units = []
>>> units.append(neo.Unit('Unit 1'))
>>> units.append(neo.Unit('Unit 2'))

We create some analog signals from a sine wave with additive Gaussian noise,
four signals in each segment:

>>> wave = sp.sin(sp.linspace(0, 20*sp.pi, 10000)) * 10
>>> for i in range(8):
... sig = wave + sp.randn(10000) * 3
... signal = neo.AnalogSignal(sig*pq.uV, sampling_rate=1*pq.kHz)
... signal.segment = segments[i%2]
... segments[i%2].analogsignals.append(signal)

And some spike trains from regular intervals or random time points:

>>> trains = []
>>> trains.append(neo.SpikeTrain(sp.linspace(0, 10, 40)*pq.s, 10*pq.s))
>>> trains.append(neo.SpikeTrain(sp.linspace(0, 10, 60)*pq.s, 10*pq.s))
>>> trains.append(neo.SpikeTrain(sp.rand(50)*10*pq.s, 10*pq.s))
>>> trains.append(neo.SpikeTrain(sp.rand(70)*10*pq.s, 10*pq.s))

Now we create the relationships between the spike trains and container
objects. Each unit has two spike trains, one in each segment:

>>> segments[0].spiketrains = [trains[0], trains[2]]
>>> segments[1].spiketrains = [trains[1], trains[3]]
>>> units[0].spiketrains = trains[:2]
>>> units[1].spiketrains = trains[2:4]
>>> for s in segments:
... for st in s.spiketrains:
... st.segment = s
>>> for u in units:
... for st in u.spiketrains:
... st.unit = u

Now that our sample data is ready, we will use some of the function from
spykeutils to analyze it.

PSTH

To create a peri stimulus time histogram from our spike trains, we call
spykeutils.rate_estimation.psth(). This function can create multiple
PSTHs and takes a dicionary of lists of spike trains. Since our spike trains
were generated by two units, we will create two histograms, one for each
unit:

>>> import spykeutils.rate_estimation
>>> st_dict = {}
>>> st_dict[units[0]] = units[0].spiketrains
>>> st_dict[units[1]] = units[1].spiketrains
>>> spykeutils.rate_estimation.psth(st_dict, 400*pq.ms)[0]
{<neo.core.unit.Unit object at 0x...>: array([6.25, 5. , 5. , 5. , 3.75, ...

spykeutils.rate_estimation.psth() returns two values: A dictionary
with the resulting histograms and a Quantity 1D with the bin edges.

If guiqwt [http://packages.python.org/guiqwt/index.html#guiqwt] is installed, we can also use the spykeutils.plot
package to create a PSTH plot from our data (in this case we want a bar
histogram and therefore only use spike trains from one unit):

>>> import spykeutils.plot
>>> spykeutils.plot.psth({units[1]: units[1].spiketrains}, bin_size=400*pq.ms, bar_plot=True)

This will open a plot window like the following:

[image: _images/psth.png]

Spike Density Estimation

Similar to a PSTH, a spike density estimation gives an esimate of the
instantaneous firing rate. Instead of binning, it is based on a kernel
convolution which results in a smoother estimate. Creating and SDE with
spykeutils works very similar to creating a PSTH. Instead of manually
choosing the size of the Gaussian kernel,
spykeutils.rate_estimation.spike_density_estimation() also supports
finding the optimal kernel size automatically for each unit:

>>> kernel_sizes = sp.logspace(2,3.3,100) * pq.ms
>>> spykeutils.rate_estimation.spike_density_estimation(st_dict, optimize_steps=kernel_sizes)[0]
{<neo.core.unit.Unit object at 0x...>: array([3.61293378, 3.62744654, 3.64195481, 3.65645819, ...

As with the PSTH, there is also a plot function for creating a spike
density estimation. Here, we use both units because the function produces
a line plot where both units can be shown at the same time:

>>> spykeutils.plot.sde(st_dict, maximum_kernel=1500*pq.ms, optimize_steps=100)

The resulting plot will look like the following:

[image: _images/sde.png]
While spike density estimations are preferable to PSTHs in many cases, the
picture also shows an important weakness: The estimation will generally be too
low on margins. The areas where this happens become larger with kernel size,
which is clearly visible from the rounded shape of Unit 1 (which really has
a flat rate) with its very large kernel size.

Signal Plot

As a final example, we will again use the spykeutils.plot package to
create a plot of the signals we created. This plot will also display the
timings of our spike trains.

>>> spykeutils.plot.signals(segments[0].analogsignals, spike_trains=segments[0].spiketrains)

[image: _images/signal.png]
The plot shows all four signals from the first segments as well as the spike
times of both spike trains in the same segment.

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	spykeutils 0.2.0 documentation

API reference

spykeutils package

	
class SpykeException[source]

	Exception thrown when a function in spykeutils encounters a
problem that is not covered by standard exceptions.

When using Spyke Viewer, these exceptions will be caught and
shown in the GUI, while general exceptions will not be caught
(and therefore be visible in the console) for easier
debugging.

conversions Module

	
analog_signal_array_to_analog_signals(signal_array)[source]

	Return a list of analog signals for an analog signal array.

If signal_array is attached to a recording channel group with exactly
is many channels as there are channels in signal_array, each created
signal will be assigned the corresponding channel. If the attached
recording channel group has only one recording channel, all created signals
will be assigned to this channel. In all other cases, the created
signal will not have a reference to a recording channel.

Note that while the created signals may have references to a segment and
channels, the relationships in the other direction are
not automatically created (the signals are not attached to the recording
channel or segment). Other properties like annotations are not copied or
referenced in the created analog signals.

	Parameters:	signal_array (neo.core.AnalogSignalArray [http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignalArray]) – An analog signal array from which the AnalogSignal
objects are constructed.

	Returns:	A list of analog signals, one for every channel in
signal_array.

	Return type:	list

	
epoch_array_to_epochs(epoch_array)[source]

	Return a list of epochs for an epoch array.

Note that while the created epochs may have references to a segment,
the relationships in the other direction are not automatically created
(the events are not attached to the segment). Other properties like
annotations are not copied or referenced in the created epochs.

	Parameters:	epoch_array (neo.core.EpochArray) – A period array from which the Epoch objects are
constructed.

	Returns:	A list of events, one for of the events in epoch_array.

	Return type:	list

	
event_array_to_events(event_array)[source]

	Return a list of events for an event array.

Note that while the created events may have references to a segment,
the relationships in the other direction are not automatically created
(the events are not attached to the segment). Other properties like
annotations are not copied or referenced in the created events.

	Parameters:	event_array (neo.core.EventArray) – An event array from which the Event objects are
constructed.

	Returns:	A list of events, one for of the events in event_array.

	Return type:	list

	
spike_train_to_spikes(spike_train, include_waveforms=True)[source]

	Return a list of spikes for a spike train.

Note that while the created spikes have references to the same segment and
unit as the spike train, the relationships in the other direction are
not automatically created (the spikes are not attached to the unit or
segment). Other properties like annotations are not copied or referenced
in the created spikes.

	Parameters:	
	spike_train (SpikeTrain) – A spike train from which the Spike objects
are constructed.

	include_waveforms (bool [http://docs.python.org/library/functions.html#bool]) – Determines if the waveforms property is
converted to the spike waveforms. If waveforms is None, this
parameter has no effect.

	Returns:	A list of Spike objects, one for every spike in spike_train.

	Return type:	list

	
spikes_to_spike_train(spikes, include_waveforms=True)[source]

	Return a spike train for a list of spikes.

All spikes must have an identical left sweep, the same unit and the same
segment, otherwise a SpykeException is raised.

Note that while the created spike train has references to the same
segment and unit as the spikes, the relationships in the other direction
are not automatically created (the spike train is not attached to the
unit or segment). Other properties like annotations are not copied or
referenced in the created spike train.

	Parameters:	
	spikes – A list of spike objects from which the SpikeTrain object
is constructed.

	include_waveforms (bool [http://docs.python.org/library/functions.html#bool]) – Determines if the waveforms from the Spike
objects are used to fill the waveforms property of the resulting
spike train. If True, all spikes need a waveform property
with the same shape or a SpykeException is raised (or the
waveform property needs to be None for all spikes).

	Returns:	A SpikeTrain object including all elements of spikes.

	Return type:	neo.core.SpikeTrain [http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain]

correlations Module

	
correlogram(trains, bin_size, max_lag=500 ms, border_correction=True, unit=ms, progress=None)[source]

	Return (cross-)correlograms from a dictionary of SpikeTrain
lists for different units.

	Parameters:	
	trains (dict [http://docs.python.org/library/stdtypes.html#dict]) – Dictionary of SpikeTrain lists.

	bin_size (Quantity scalar) – Bin size (time).

	max_lag (Quantity scalar) – Cut off (end time of calculated correlogram).

	border_correction (bool [http://docs.python.org/library/functions.html#bool]) – Apply correction for less data at higher
timelags. Not perfect for bin_size != 1*``unit``, especially with
large max_lag compared to length of spike trains.

	unit (Quantity) – Unit of X-Axis.

	progress (spykeutils.progress_indicator.ProgressIndicator) – A ProgressIndicator object for the operation.

	Returns:	Two values:

	An ordered dictionary indexed with the indices of trains of
ordered dictionaries indexed with the same indices. Entries of
the inner dictionaries are the resulting (cross-)correlograms as
numpy arrays. All crosscorrelograms can be indexed in two
different ways: c[index1][index2] and c[index2][index1].

	The bins used for the correlogram calculation.

	Return type:	dict, Quantity 1D

progress_indicator Module

	
exception CancelException[source]

	Bases: exceptions.Exception

This is raised when a user cancels a progress process. It is used
by ProgressIndicator and its descendants.

	
class ProgressIndicator[source]

	Bases: object

Base class for classes indicating progress of a long operation.

This class does not implement any of the methods and can be used
as a dummy if no progress indication is needed.

	
begin(title='')[source]

	Signal that the operation starts.

	Parameters:	title (string [http://docs.python.org/library/string.html#string]) – The name of the whole operation.

	
done()[source]

	Signal that the operation is done.

	
set_status(new_status)[source]

	Set status description.

	Parameters:	new_status (string [http://docs.python.org/library/string.html#string]) – A description of the current status.

	
set_ticks(ticks)[source]

	Set the required number of ticks before the operation is done.

	Parameters:	ticks (int [http://docs.python.org/library/functions.html#int]) – The number of steps that the operation will take.

	
step(num_steps=1)[source]

	Signal that one or more steps of the operation were completed.

	Parameters:	num_steps (int [http://docs.python.org/library/functions.html#int]) – The number of steps that have been completed.

	
ignores_cancel(function)[source]

	Decorator for functions that should ignore a raised
CancelException and just return nothing in this case

rate_estimation Module

	
binned_spike_trains(trains, bin_size, start=0 ms, stop=None)[source]

	Return dictionary of binned rates for a dictionary of
SpikeTrain lists.

	Parameters:	
	trains (dict [http://docs.python.org/library/stdtypes.html#dict]) – A sequence of SpikeTrain lists.

	bin_size (Quantity scalar) – The desired bin size (as a time quantity).

	stop (Quantity scalar) – The desired time for the end of the last bin. It will
be recalculated if there are spike trains which end earlier
than this time.

	Returns:	A dictionary (with the same indices as trains) of lists
of spike train counts and the bin borders.

	Return type:	dict, Quantity 1D

	
psth(trains, bin_size, rate_correction=True, start=0 ms, stop=None)[source]

	Return dictionary of peri stimulus time histograms for a dictionary
of SpikeTrain lists.

	Parameters:	
	trains (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of lists of SpikeTrain objects.

	bin_size (Quantity scalar) – The desired bin size (as a time quantity).

	rate_correction (bool [http://docs.python.org/library/functions.html#bool]) – Determines if a rates (True) or
counts (False) are returned.

	start (Quantity scalar) – The desired time for the start of the first bin. It
will be recalculated if there are spike trains which start
later than this time.

	stop (Quantity scalar) – The desired time for the end of the last bin. It will
be recalculated if there are spike trains which end earlier
than this time.

	Returns:	A dictionary (with the same indices as trains) of arrays
containing counts (or rates if rate_correction is True)
and the bin borders.

	Return type:	dict, Quantity 1D

	
spike_density_estimation(trains, start=0 ms, stop=None, evaluation_points=None, kernel=gauss_kernel, kernel_size=100 ms, optimize_steps=None, progress=None)[source]

	Create a spike density estimation from a dictionary of
lists of SpikeTrain objects. The spike density estimations give
an estimate of the instantaneous rate. Optionally finds optimal
kernel size for given data.

	Parameters:	
	trains (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of SpikeTrain lists.

	start (Quantity scalar) – The desired time for the start of the first bin. It
will be recalculated if there are spike trains which start later
than this time. This parameter can be negative (which could be
useful when aligning on events).

	stop (Quantity scalar) – The desired time for the end of the last bin. It will
be recalculated if there are spike trains which end earlier
than this time.

	evaluation_points (Quantity 1D) – An array of time points at which the
density estimation is evaluated to produce the data. If this
is None, 1000 equally spaced points covering the range of the
input spike trains will be used.

	kernel (func) – The kernel function to use, should accept
two parameters: A ndarray of distances and a kernel size.
The total area under the kernel function sould be 1.
Default: Gaussian kernel

	kernel_size (Quantity scalar) – A uniform kernel size for all spike trains.
Only used if optimization of kernel sizes is not used.

	optimize_steps (Quantity 1D) – An array of time lengths that will be
considered in the kernel width optimization. Note that the
optimization assumes a Gaussian kernel and will most likely
not give the optimal kernel size if another kernel is used.
If None, kernel_size will be used.

	progress (spykeutils.progress_indicator.ProgressIndicator) – Set this parameter to report progress.

	Returns:	Three values:

	A dictionary of the spike density estimations (Quantity 1D in
Hz). Indexed the same as trains.

	A dictionary of kernel sizes (Quantity scalars). Indexed the
same as trains.

	The used evaluation points.

	Return type:	dict, dict, Quantity 1D

	
aligned_spike_trains(trains, events, copy=True)[source]

	Return a list of spike trains aligned to an event (the event will
be time 0 on the returned trains).

	Parameters:	
	trains (dict [http://docs.python.org/library/stdtypes.html#dict]) – A list of SpikeTrain objects.

	events (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of Event objects, indexed by segment.
These events (in case of lists, always the first element in the list)
will be used to align the spike trains and will be at time 0 for
the aligned spike trains.

	copy (bool [http://docs.python.org/library/functions.html#bool]) – Determines if aligned copies of the original
spike trains will be returned. If not, every spike train needs
exactly one corresponding event, otherwise a ValueError will
be raised. Otherwise, entries with no event will be ignored.

	
collapsed_spike_trains(trains)[source]

	Return a superposition of a list of spike trains.

	Parameters:	trains (iterable) – A list of SpikeTrain objects

	Returns:	A SpikeTrain object containing all spikes of the given
SpikeTrain objects.

	
minimum_spike_train_interval(trains)[source]

	Computes the minimum starting time and maximum end time that all
given spike trains share.

	Parameters:	trains (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of sequences of SpikeTrain
objects.

	Returns:	Maximum shared start time and minimum shared stop time.

	Return type:	Quantity scalar, Quantity scalar

	
optimal_gauss_kernel_size(train, optimize_steps, progress=None)[source]

	Return the optimal kernel size for a spike density estimation
of a SpikeTrain for a gaussian kernel. This function takes a single
spike train, which can be a superposition of multiple spike trains
(created with collapsed_spike_trains()) that should be included
in a spike density estimation.
See (Shimazaki, Shinomoto. Journal of Computational Neuroscience. 2010).

	Parameters:	
	train (SpikeTrain) – The spike train for which the kernel
size should be optimized.

	optimize_steps (Quantity 1D) – Array of kernel sizes to try (the best of
these sizes will be returned).

	progress (spykeutils.progress_indicator.ProgressIndicator) – Set this parameter to report progress. Will be
advanced by len(optimize_steps) steps.

	Returns:	Best of the given kernel sizes

	Return type:	Quantity scalar

sorting_quality_assesment Module

Functions for estimating the quality of spike sorting results. These
functions estimate false positive and false negative fractions.

	
calculate_overlap_fp_fn(means, spikes)[source]

	Return a dict of tuples (False positive rate, false negative rate)
indexed by unit.

Details for the calculation can be found in
(Hill et al. The Journal of Neuroscience. 2011). This function works on
prewhitened data, which means it assumes that all clusters have a uniform
normal distribution. Data can be prewhitened using the noise covariance
matrix.

The calculation for total false positive and false negative rates does
not follow (Hill et al. The Journal of Neuroscience. 2011), where a
simple addition of pairwise probabilities is proposed. Instead, the
total error probabilities are estimated using all clusters at once.

	Parameters:	
	means (dict [http://docs.python.org/library/stdtypes.html#dict]) – Dictionary of prewhitened cluster means
(e.g. unit templates) indexed by unit as Spike objects or
numpy arrays for all units.

	spikes (dict [http://docs.python.org/library/stdtypes.html#dict]) – Dictionary, indexed by unit, of lists of prewhitened
spike waveforms as Spike objects or numpy arrays for all units.

	Returns:	Two values:

	A dictionary (indexed by unit) of total
(false positives, false negatives) tuples.

	A dictionary of dictionaries, both indexed by units,
of pairwise (false positives, false negatives) tuples.

	Return type:	dict, dict

	
calculate_refperiod_fp(num_spikes, refperiod, violations, total_time)[source]

	Return the rate of false positives calculated from refractory period
calculations for each unit. The equation used is described in
(Hill et al. The Journal of Neuroscience. 2011).

	Parameters:	
	num_spikes (dict [http://docs.python.org/library/stdtypes.html#dict]) – Dictionary of total number of spikes,
indexed by unit.

	refperiod (Quantity scalar) – The refractory period (time). If the spike sorting
algorithm includes a censored period (a time after a spike during
which no new spikes can be found), subtract it from the refractory
period before passing it to this function.

	violations (dict [http://docs.python.org/library/stdtypes.html#dict]) – Dictionary of total number of violations,
indexed the same as num_spikes.

	total_time (Quantity scalar) – The total time in which violations could have occured.

	Returns:	A dictionary of false positive rates indexed by unit.
Note that values above 0.5 can not be directly interpreted as a
false positive rate! These very high values can e.g. indicate
that the chosen refractory period was too large.

	
get_refperiod_violations(spike_trains, refperiod, progress=None)[source]

	Return the refractory period violations in the given spike trains
for the specified refractory period.

	Parameters:	
	spike_trains (dict [http://docs.python.org/library/stdtypes.html#dict]) – Dictionary of lists of SpikeTrain objects.

	refperiod (Quantity scalar) – The refractory period (time).

	progress (spykeutils.progress_indicator.ProgressIndicator) – Set this parameter to report progress.

	Returns:	Two values:

	The total number of violations.

	A dictionary (with the same indices as spike_trains) of
arrays with violation times (Quantity 1D with the same unit as
refperiod) for each spike train.

	Return type:	int, dict

staionarity Module

	
spike_amplitude_histogram(trains, num_bins, uniform_y_scale=True, unit=uV, progress=None)[source]

	Return a spike amplitude histogram.

The resulting is useful to assess the drift in spike amplitude over a longer
recording. It shows histograms (one for each trains entry, e.g. segment)
of maximum and minimum spike amplitudes.

	Parameters:	
	trains (list [http://docs.python.org/library/functions.html#list]) – A list of lists of SpikeTrain objects. Each entry of
the outer list will be one point on the x-axis (they could correspond
to segments), all amplitude occurences of spikes contained in the
inner list will be added up.

	num_bins (int [http://docs.python.org/library/functions.html#int]) – Number of bins for the histograms.

	uniform_y_scale (bool [http://docs.python.org/library/functions.html#bool]) – If True, the histogram for each channel
will use the same bins. Otherwise, the minimum bin range is computed
separately for each channel.

	unit (Quantity) – Unit of Y-Axis.

	progress (spykeutils.progress_indicator.ProgressIndicator) – Set this parameter to report progress.

	Returns:	A tuple with three values:

	A three-dimensional histogram matrix, where the first dimension
corresponds to bins, the second dimension to the entries of
trains (e.g. segments) and the third dimension to channels.

	A list of the minimum amplitude value for each channel (all values
will be equal if uniform_y_scale is true).

	A list of the maximum amplitude value for each channel (all values
will be equal if uniform_y_scale is true).

	Return type:	(ndarray, list, list)

Subpackages

	spykeutils.plot package

	plugin Package
	analysis_plugin Module

	data_provider Module

	gui_data Module

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	spykeutils 0.2.0 documentation

 	API reference

spykeutils.plot package

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.0

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	spykeutils 0.2.0 documentation

 	API reference

plugin Package

This package provides support for writing plugins for Spyke Viewer.
It belongs to spykeutils so that plugins can be executed in an evironment
where the spykeviewer package and its dependencies are not installed
(e.g. servers).

analysis_plugin Module

	
class AnalysisPlugin[source]

	Bases: spykeutils.plugin.gui_data.DataSet

Base class for Analysis plugins. Inherit this class to create a
plugin.

The two most important methods are get_name() and start().
Both should be overridden by every plugin. The class also has
functionality for GUI configuration and saving/restoring analysis
results.

The GUI configuration uses guidata [http://packages.python.org/guidata/index.html#guidata]. Because AnalysisPlugin
inherits from DataSet,
configuration options can easily be added directly to the class
definition. For example, the following code creates an analysis that
has two configuration options which are used in the start() method
to print to the console:

from spykeutils.plugin.analysis_plugin import AnalysisPlugin

class ExampleAnalysis(AnalysisPlugin):
 some_time = di.FloatItem('Some time', default=2.0, unit='ms')
 print_more = di.BoolItem('Print additional info', default=True)

 def start(self, current, selections):
 print 'The selected time is', some_time, 'milliseconds.'
 if print_more:
 print 'This is important additional information!'

The class attribute data_dir contains a base directory for saving
and loading data. It is set by Spyke Viewer to the directory specified
in the settings. When using an AnalysisPlugin without Spyke Viewer,
the default value is an empty string (so the current directory will
be used) and the attribute can be set to an arbitrary directory.

	
configure()[source]

	Configure the analysis. Override if a different or additional
configuration apart from guidata is needed.

	
get_name()[source]

	Return the name of an analysis. Override to specify analysis
name.

	Returns:	The name of the plugin.

	Return type:	str

	
get_parameters()[source]

	Return a dictionary of the configuration that can
be read with deserialize_parameters(). Override both if
non-guidata attributes need to be serialized or if some guidata
parameters should not be serialized (e.g. they only affect the
visual presentation).

	Returns:	A dictionary of all configuration parameters.

	Return type:	dict

	
load(name, selections, params=None, consider_guiparams=True)[source]

	Return the most recent HDF5 file for a certain parameter
configuration. If no such file exists, return None. This
function works with the files created by save().

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – The name of the results to load.

	selections (sequence) – A list of DataProvider objects
that are relevant for the analysis results.

	params (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary, indexed by strings (which should
be valid as python identifiers), with parameters apart from GUI
configuration used to obtain the results. All keys have to be
integers, floats, strings or lists of these types.

	consider_guiparams (bool [http://docs.python.org/library/functions.html#bool]) – Determines if the guidata parameters
of the class should be considered if they exist in the HDF5
file. This should be set to False if save() is used with
save_guiparams set to False.

	Returns:	An open PyTables file object ready to be used to read
data. Afterwards, the file has to be closed by calling the
tables.File.close() method. If no appropriate file
exists, None is returned.

	Return type:	tables.File

	
save(name, selections, params=None, save_guiparams=True)[source]

	Return a HDF5 file object with parameters already stored.
Save analysis results to this file.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – The name of the results to save. A folder with
this name will be used (and created if necessary) to store
the analysis result files.

	selections (sequence) – A list of DataProvider objects
that are relevant for the analysis results.

	params (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary, indexed by strings (which should
be valid as python identifiers), with parameters apart from GUI
configuration used to obtain the results. All keys have to be
integers, floats, strings or lists of these types.

	save_guiparams (bool [http://docs.python.org/library/functions.html#bool]) – Determines if the guidata parameters of
the class should be saved in the file.

	Returns:	An open PyTables file object ready to be used to store
data. Afterwards, the file has to be closed by calling the
tables.File.close() method.

	Return type:	tables.File

	
set_parameters(parameters)[source]

	Load configuration from a dictionary that has been
created by serialize_parameters(). Override both if
non-guidata attributes need to be serialized or if some guidata
parameterss hould not be serialized (e.g. they only affect the
visual presentation).

	Parameters:	parameters (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of all configuration
parameters.

	
start(current, selections)[source]

	Entry point for processing. Override with analysis code.

	Parameters:	
	current (spykeviewer.plugin_framework.data_provider.DataProvider) – This data provider is used if the analysis
should be performed on the data currently selected in the GUI.

	selections (list [http://docs.python.org/library/functions.html#list]) – This parameter contains all saved
selections. It is used if an analysis needs multiple data sets.

data_provider Module

	
class DataProvider(name, progress)[source]

	Bases: object

Defines all methods that should be implemented by a
selection/data provider class.

A DataProvider encapsulates
access to a selection of data. It can be used by plugins to
acesss data currently selected in the GUI or in saved selections.
It also contains an attribute progress, a
spykeutils.progress_indicator.ProgressIndicator that
can be used to report the progress of an operation (and is used
by methods of this class if they can lead to processing times
of half a second or more).

This class serves as an abstract base class and should not be
instantiated.

	
analog_signal_arrays()[source]

	Return a list of AnalogSignalArray objects.

	
analog_signal_arrays_by_channelgroup()[source]

	Return a dictionary (indexed by RecordingChannelGroup) of
lists of AnalogSignalArray objects.

If analog signals arrays not attached to a RecordingChannel are
selected, their dictionary key will be
DataProvider.no_channelgroup.

	
analog_signal_arrays_by_channelgroup_and_segment()[source]

	Return a dictionary (indexed by RecordingChannelGroup) of
dictionaries (indexed by Segment) of AnalogSignalArray objects.

If there are multiple analog signals in one RecordingChannel for
the same Segment, only the first will be contained in the returned
dictionary. If analog signal arrays not attached to a Segment or
RecordingChannelGroup are selected, their dictionary key will be
DataProvider.no_segment or DataProvider.no_channelgroup,
respectively.

	
analog_signal_arrays_by_segment()[source]

	Return a dictionary (indexed by Segment) of lists of
AnalogSignalArray objects.

If analog signals arrays not attached to a Segment are selected,
their dictionary key will be DataProvider.no_segment.

	
analog_signal_arrays_by_segment_and_channelgroup()[source]

	Return a dictionary (indexed by RecordingChannelGroup) of
dictionaries (indexed by Segment) of AnalogSignalArray objects.

If there are multiple analog signals in one RecordingChannel for
the same Segment, only the first will be contained in the returned
dictionary. If analog signal arrays not attached to a Segment or
RecordingChannelGroup are selected, their dictionary key will be
DataProvider.no_segment or DataProvider.no_channelgroup,
respectively.

	
analog_signals()[source]

	Return a list of AnalogSignal objects.

	
analog_signals_by_channel()[source]

	Return a dictionary (indexed by RecordingChannel) of lists
of AnalogSignal objects.

If analog signals not attached to a RecordingChannel are selected,
their dictionary key will be DataProvider.no_channel.

	
analog_signals_by_channel_and_segment()[source]

	Return a dictionary (indexed by RecordingChannel) of
dictionaries (indexed by Segment) of AnalogSignal lists.

If analog signals not attached to a Segment or
RecordingChannel are selected, their dictionary key will be
DataProvider.no_segment or DataProvider.no_channel,
respectively.

	
analog_signals_by_segment()[source]

	Return a dictionary (indexed by Segment) of lists of
AnalogSignal objects.

If analog signals not attached to a Segment are selected, their
dictionary key will be DataProvider.no_segment.

	
analog_signals_by_segment_and_channel()[source]

	Return a dictionary (indexed by Segment) of
dictionaries (indexed by RecordingChannel) of AnalogSignal lists.

If analog signals not attached to a Segment or
RecordingChannel are selected, their dictionary key will be
DataProvider.no_segment or DataProvider.no_channel,
respectively.

	
blocks()[source]

	Return a list of selected Block objects.

The returned objects will contain all regular references, not just to
selected objects.

	
data_dict()[source]

	Return a dictionary with all information to serialize the
object.

	
epoch_arrays()[source]

	Return a dictionary (indexed by Segment) of lists of
EpochArray objects.

	
epochs(include_array_epochs=True)[source]

	Return a dictionary (indexed by Segment) of lists of
Epoch objects.

	Parameters:	include_array_epochs (bool [http://docs.python.org/library/functions.html#bool]) – Determines if EpochArray objects
should be converted to Epoch objects and included in the returned
list.

	
event_arrays()[source]

	Return a dictionary (indexed by Segment) of lists of
EventArray objects.

	
events(include_array_events=True)[source]

	Return a dictionary (indexed by Segment) of lists of
Event objects.

	Parameters:	include_array_events (bool [http://docs.python.org/library/functions.html#bool]) – Determines if EventArray objects
should be converted to Event objects and included in the returned
list.

	
classmethod from_data(data, progress=None)[source]

	Create a new DataProvider object from a dictionary. This
method is mostly for internal use.

The respective type of DataProvider (e.g.
spykeviewer.plugin_framework.data_provider_neo.DataProviderNeo
has to be imported in the environment where this function is
called.

	Parameters:	
	data (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary containing data from a DataProvider
object, as returned by data_dict().

	progress (ProgressIndicator) – The object where loading progress
will be indicated.

	
labeled_epochs(label, include_array_epochs=True)[source]

	Return a dictionary (indexed by Segment) of lists of Epoch
objects with the given label.

	Parameters:	
	label (str [http://docs.python.org/library/functions.html#str]) – The name of the Epoch objects to be returnded

	include_array_epochs (bool [http://docs.python.org/library/functions.html#bool]) – Determines if EpochArray objects
should be converted to Epoch objects and included in the returned
list.

	
labeled_events(label, include_array_events=True)[source]

	Return a dictionary (indexed by Segment) of lists of Event
objects with the given label.

	Parameters:	
	label (str [http://docs.python.org/library/functions.html#str]) – The name of the Event objects to be returnded

	include_array_events (bool [http://docs.python.org/library/functions.html#bool]) – Determines if EventArray objects
should be converted to Event objects and included in the returned
list.

	
num_analog_signal_arrays()[source]

	Return the number of AnalogSignalArray objects.

	
num_analog_signals()[source]

	Return the number of AnalogSignal objects.

	
recording_channel_groups()[source]

	Return a list of selected RecordingChannelGroup objects.

The returned objects will contain all regular references, not just to
selected objects.

	
recording_channels()[source]

	Return a list of selected RecordingChannel objects.

The returned objects will contain all regular references, not just to
selected objects.

	
segments()[source]

	Return a list of selected Segment objects.

The returned objects will contain all regular references, not just to
selected objects.

	
selection_blocks()[source]

	Return a list of selected blocks.

The returned blocks will contain references to all other selected
elements further down in the object hierarchy, but no references to
elements which are not selected. The returned hierarchy is a copy,
so changes made to it will not persist. The main purpose
of this function is to provide an object hierarchy that can be
saved to a neo file. It is not recommended to use it for data
processing, the respective functions that return objects lower
in the hierarchy are better suited for that purpose.

	
spike_trains()[source]

	Return a list of SpikeTrain objects.

	
spike_trains_by_segment()[source]

	Return a dictionary (indexed by Segment) of lists of
SpikeTrain objects.

If spike trains not attached to a Segment are selected, their
dictionary key will be DataProvider.no_segment.

	
spike_trains_by_segment_and_unit()[source]

	Return a dictionary (indexed by Unit) of dictionaries
(indexed by Segment) of SpikeTrain objects.

If there are multiple spike trains in one Segment for the same Unit,
only the first will be contained in the returned dictionary. If spike
trains not attached to a Unit or Segment are selected, their
dictionary key will be DataProvider.no_unit or
DataProvider.no_segment, respectively.

	
spike_trains_by_unit()[source]

	Return a dictionary (indexed by Unit) of lists of
SpikeTrain objects.

If spike trains not attached to a Unit are selected, their
dicionary key will be DataProvider.no_unit.

	
spike_trains_by_unit_and_segment()[source]

	Return a dictionary (indexed by Unit) of dictionaries
(indexed by Segment) of SpikeTrain objects.

If there are multiple spike trains in one Segment for the same Unit,
only the first will be contained in the returned dictionary. If spike
trains not attached to a Unit or Segment are selected, their
dictionary key will be DataProvider.no_unit or
DataProvider.no_segment, respectively.

	
spikes()[source]

	Return a list of Spike objects.

	
spikes_by_segment()[source]

	Return a dictionary (indexed by Segment) of lists of
Spike objects.

If spikes not attached to a Segment are selected, their
dictionary key will be DataProvider.no_segment.

	
spikes_by_segment_and_unit()[source]

	Return a dictionary (indexed by Segment) of dictionaries
(indexed by Unit) of lists of Spike lists.

If spikes not attached to a Unit or Segment are selected, their
dictionary key will be DataProvider.no_unit or
DataProvider.no_segment, respectively.

	
spikes_by_unit()[source]

	Return a dictionary (indexed by Unit) of lists of
Spike objects.

If spikes not attached to a Unit are selected, their
dicionary key will be DataProvider.no_unit.

	
spikes_by_unit_and_segment()[source]

	Return a dictionary (indexed by Unit) of dictionaries
(indexed by Segment) of Spike lists.

If there are multiple spikes in one Segment for the same Unit,
only the first will be contained in the returned dictionary. If
spikes not attached to a Unit or Segment are selected, their
dictionary key will be DataProvider.no_unit or
DataProvider.no_segment, respectively.

	
units()[source]

	Return a list of selected Unit objects.

The returned objects will contain all regular references, not just to
selected objects.

gui_data Module

This module gives access to all members of
guidata.dataset.dataitems [http://packages.python.org/guidata/reference.html#guidata.dataset.dataitems] and guidata.dataset.datatypes [http://packages.python.org/guidata/reference.html#guidata.dataset.datatypes].
If guidata [http://packages.python.org/guidata/index.html#guidata] cannot be imported, the module offers suitable dummy
objects instead (e.g. for use on a server).

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.0

 Navigation

 	
 index

 	
 modules |

 	spykeutils 0.2.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 spykeutils	

 	
 	
 spykeutils.conversions	

 	
 	
 spykeutils.correlations	

 	
 	
 spykeutils.plugin	

 	
 	
 spykeutils.plugin.analysis_plugin	

 	
 	
 spykeutils.plugin.data_provider	

 	
 	
 spykeutils.plugin.gui_data	

 	
 	
 spykeutils.progress_indicator	

 	
 	
 spykeutils.rate_estimation	

 	
 	
 spykeutils.sorting_quality_assesment	

 	
 	
 spykeutils.stationarity	

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.0

 Navigation

 	
 index

 	
 modules |

 	spykeutils 0.2.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U

A

 	

 	aligned_spike_trains() (in module spykeutils.rate_estimation)

 	analog_signal_array_to_analog_signals() (in module spykeutils.conversions)

 	analog_signal_arrays() (DataProvider method)

 	analog_signal_arrays_by_channelgroup() (DataProvider method)

 	analog_signal_arrays_by_channelgroup_and_segment() (DataProvider method)

 	analog_signal_arrays_by_segment() (DataProvider method)

 	analog_signal_arrays_by_segment_and_channelgroup() (DataProvider method)

 	

 	analog_signals() (DataProvider method)

 	analog_signals_by_channel() (DataProvider method)

 	analog_signals_by_channel_and_segment() (DataProvider method)

 	analog_signals_by_segment() (DataProvider method)

 	analog_signals_by_segment_and_channel() (DataProvider method)

 	AnalysisPlugin (class in spykeutils.plugin.analysis_plugin)

B

 	

 	begin() (ProgressIndicator method)

 	binned_spike_trains() (in module spykeutils.rate_estimation)

 	

 	blocks() (DataProvider method)

C

 	

 	calculate_overlap_fp_fn() (in module spykeutils.sorting_quality_assesment)

 	calculate_refperiod_fp() (in module spykeutils.sorting_quality_assesment)

 	CancelException

 	

 	collapsed_spike_trains() (in module spykeutils.rate_estimation)

 	configure() (AnalysisPlugin method)

 	correlogram() (in module spykeutils.correlations)

D

 	

 	data_dict() (DataProvider method)

 	DataProvider (class in spykeutils.plugin.data_provider)

 	

 	done() (ProgressIndicator method)

E

 	

 	epoch_array_to_epochs() (in module spykeutils.conversions)

 	epoch_arrays() (DataProvider method)

 	epochs() (DataProvider method)

 	

 	event_array_to_events() (in module spykeutils.conversions)

 	event_arrays() (DataProvider method)

 	events() (DataProvider method)

F

 	

 	from_data() (spykeutils.plugin.data_provider.DataProvider class method)

G

 	

 	get_name() (AnalysisPlugin method)

 	get_parameters() (AnalysisPlugin method)

 	

 	get_refperiod_violations() (in module spykeutils.sorting_quality_assesment)

I

 	

 	ignores_cancel() (in module spykeutils.progress_indicator)

L

 	

 	labeled_epochs() (DataProvider method)

 	labeled_events() (DataProvider method)

 	

 	load() (AnalysisPlugin method)

M

 	

 	minimum_spike_train_interval() (in module spykeutils.rate_estimation)

N

 	

 	num_analog_signal_arrays() (DataProvider method)

 	

 	num_analog_signals() (DataProvider method)

O

 	

 	optimal_gauss_kernel_size() (in module spykeutils.rate_estimation)

P

 	

 	ProgressIndicator (class in spykeutils.progress_indicator)

 	

 	psth() (in module spykeutils.rate_estimation)

R

 	

 	recording_channel_groups() (DataProvider method)

 	

 	recording_channels() (DataProvider method)

S

 	

 	save() (AnalysisPlugin method)

 	segments() (DataProvider method)

 	selection_blocks() (DataProvider method)

 	set_parameters() (AnalysisPlugin method)

 	set_status() (ProgressIndicator method)

 	set_ticks() (ProgressIndicator method)

 	spike_amplitude_histogram() (in module spykeutils.stationarity)

 	spike_density_estimation() (in module spykeutils.rate_estimation)

 	spike_train_to_spikes() (in module spykeutils.conversions)

 	spike_trains() (DataProvider method)

 	spike_trains_by_segment() (DataProvider method)

 	spike_trains_by_segment_and_unit() (DataProvider method)

 	spike_trains_by_unit() (DataProvider method)

 	spike_trains_by_unit_and_segment() (DataProvider method)

 	spikes() (DataProvider method)

 	spikes_by_segment() (DataProvider method)

 	spikes_by_segment_and_unit() (DataProvider method)

 	

 	spikes_by_unit() (DataProvider method)

 	spikes_by_unit_and_segment() (DataProvider method)

 	spikes_to_spike_train() (in module spykeutils.conversions)

 	SpykeException (class in spykeutils)

 	spykeutils (module)

 	spykeutils.conversions (module)

 	spykeutils.correlations (module)

 	spykeutils.plugin (module)

 	spykeutils.plugin.analysis_plugin (module)

 	spykeutils.plugin.data_provider (module)

 	spykeutils.plugin.gui_data (module)

 	spykeutils.progress_indicator (module)

 	spykeutils.rate_estimation (module)

 	spykeutils.sorting_quality_assesment (module)

 	spykeutils.stationarity (module)

 	start() (AnalysisPlugin method)

 	step() (ProgressIndicator method)

U

 	

 	units() (DataProvider method)

 Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.0

 _images/signal.png
Time (5)

Show Legend Sidebar [Synchronize X Axes Synchronize Y Axes

_static/minus.png

_static/comment-bright.png

_modules/spykeutils/plugin/data_provider.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 		spykeutils »

 Source code for spykeutils.plugin.data_provider

import neo

[docs]class DataProvider(object):
 """ Defines all methods that should be implemented by a
 selection/data provider class.

 A `DataProvider` encapsulates
 access to a selection of data. It can be used by plugins to
 acesss data currently selected in the GUI or in saved selections.
 It also contains an attribute `progress`, a
 :class:`spykeutils.progress_indicator.ProgressIndicator` that
 can be used to report the progress of an operation (and is used
 by methods of this class if they can lead to processing times
 of half a second or more).

 This class serves as an abstract base class and should not be
 instantiated."""
 _factories = {}
 no_unit = neo.Unit(name='No Unit')
 no_segment = neo.Segment(name='No segment')
 no_channel = neo.RecordingChannel(name='No recording channel')
 no_channelgroup = neo.RecordingChannelGroup(name='No recording channel group')
 no_unit.annotate(unique_id=-1)
 no_segment.annotate(unique_id=-1)
 no_channel.annotate(unique_id=-1)
 no_channelgroup.annotate(unique_id=-1)

 def __init__(self, name, progress):
 self.name = name
 self.progress = progress

 def _invert_indices(self, dictionary):
 """ Invert the indices of a dictionary of dictionaries.
 """
 dict_type = type(dictionary)
 ret = dict_type()
 for i1 in dictionary:
 for i2 in dictionary[i1]:
 if not i2 in ret:
 ret[i2] = dict_type()
 ret[i2][i1] = dictionary[i1][i2]
 return ret

[docs] def blocks(self):
 """ Return a list of selected Block objects.

 The returned objects will contain all regular references, not just to
 selected objects.
 """
 return []

[docs] def segments(self):
 """ Return a list of selected Segment objects.

 The returned objects will contain all regular references, not just to
 selected objects.
 """
 return []

[docs] def recording_channel_groups(self):
 """ Return a list of selected RecordingChannelGroup objects.

 The returned objects will contain all regular references, not just to
 selected objects.
 """
 return []

[docs] def recording_channels(self):
 """ Return a list of selected RecordingChannel objects.

 The returned objects will contain all regular references, not just to
 selected objects.
 """
 return []

[docs] def units(self):
 """ Return a list of selected Unit objects.

 The returned objects will contain all regular references, not just to
 selected objects.
 """
 return []

[docs] def selection_blocks(self):
 """ Return a list of selected blocks.

 The returned blocks will contain references to all other selected
 elements further down in the object hierarchy, but no references to
 elements which are not selected. The returned hierarchy is a copy,
 so changes made to it will not persist. The main purpose
 of this function is to provide an object hierarchy that can be
 saved to a neo file. It is not recommended to use it for data
 processing, the respective functions that return objects lower
 in the hierarchy are better suited for that purpose.
 """
 return []

[docs] def spike_trains(self):
 """ Return a list of SpikeTrain objects.
 """
 return []

[docs] def spike_trains_by_unit(self):
 """ Return a dictionary (indexed by Unit) of lists of
 SpikeTrain objects.

 If spike trains not attached to a Unit are selected, their
 dicionary key will be ``DataProvider.no_unit``.
 """
 return {}

[docs] def spike_trains_by_segment(self):
 """ Return a dictionary (indexed by Segment) of lists of
 SpikeTrain objects.

 If spike trains not attached to a Segment are selected, their
 dictionary key will be ``DataProvider.no_segment``.
 """
 return {}

[docs] def spike_trains_by_unit_and_segment(self):
 """ Return a dictionary (indexed by Unit) of dictionaries
 (indexed by Segment) of SpikeTrain objects.

 If there are multiple spike trains in one Segment for the same Unit,
 only the first will be contained in the returned dictionary. If spike
 trains not attached to a Unit or Segment are selected, their
 dictionary key will be ``DataProvider.no_unit`` or
 ``DataProvider.no_segment``, respectively.
 """
 return {}

[docs] def spike_trains_by_segment_and_unit(self):
 """ Return a dictionary (indexed by Unit) of dictionaries
 (indexed by Segment) of SpikeTrain objects.

 If there are multiple spike trains in one Segment for the same Unit,
 only the first will be contained in the returned dictionary. If spike
 trains not attached to a Unit or Segment are selected, their
 dictionary key will be ``DataProvider.no_unit`` or
 ``DataProvider.no_segment``, respectively.
 """
 return self._invert_indices(self.spike_trains_by_unit_and_segment())

[docs] def spikes(self):
 """ Return a list of Spike objects.
 """
 return []

[docs] def spikes_by_unit(self):
 """ Return a dictionary (indexed by Unit) of lists of
 Spike objects.

 If spikes not attached to a Unit are selected, their
 dicionary key will be ``DataProvider.no_unit``.
 """
 return {}

[docs] def spikes_by_segment(self):
 """ Return a dictionary (indexed by Segment) of lists of
 Spike objects.

 If spikes not attached to a Segment are selected, their
 dictionary key will be ``DataProvider.no_segment``.
 """
 return {}

[docs] def spikes_by_unit_and_segment(self):
 """ Return a dictionary (indexed by Unit) of dictionaries
 (indexed by Segment) of Spike lists.

 If there are multiple spikes in one Segment for the same Unit,
 only the first will be contained in the returned dictionary. If
 spikes not attached to a Unit or Segment are selected, their
 dictionary key will be ``DataProvider.no_unit`` or
 ``DataProvider.no_segment``, respectively.
 """
 return {}

[docs] def spikes_by_segment_and_unit(self):
 """ Return a dictionary (indexed by Segment) of dictionaries
 (indexed by Unit) of lists of Spike lists.

 If spikes not attached to a Unit or Segment are selected, their
 dictionary key will be ``DataProvider.no_unit`` or
 ``DataProvider.no_segment``, respectively.
 """
 return self._invert_indices(self.spikes_by_unit_and_segment())

[docs] def events(self, include_array_events = True):
 """ Return a dictionary (indexed by Segment) of lists of
 Event objects.

 :param bool include_array_events: Determines if EventArray objects
 should be converted to Event objects and included in the returned
 list.
 """
 return {}

[docs] def labeled_events(self, label, include_array_events = True):
 """ Return a dictionary (indexed by Segment) of lists of Event
 objects with the given label.

 :param str label: The name of the Event objects to be returnded
 :param bool include_array_events: Determines if EventArray objects
 should be converted to Event objects and included in the returned
 list.
 """
 return []

[docs] def event_arrays(self):
 """ Return a dictionary (indexed by Segment) of lists of
 EventArray objects.
 """
 return {}

[docs] def epochs(self, include_array_epochs = True):
 """ Return a dictionary (indexed by Segment) of lists of
 Epoch objects.

 :param bool include_array_epochs: Determines if EpochArray objects
 should be converted to Epoch objects and included in the returned
 list.
 """
 return {}

[docs] def labeled_epochs(self, label, include_array_epochs = True):
 """ Return a dictionary (indexed by Segment) of lists of Epoch
 objects with the given label.

 :param str label: The name of the Epoch objects to be returnded
 :param bool include_array_epochs: Determines if EpochArray objects
 should be converted to Epoch objects and included in the returned
 list.
 """
 return []

[docs] def epoch_arrays(self):
 """ Return a dictionary (indexed by Segment) of lists of
 EpochArray objects.
 """
 return {}

[docs] def num_analog_signals(self):
 """ Return the number of AnalogSignal objects.
 """
 return 0

[docs] def analog_signals(self):
 """ Return a list of AnalogSignal objects.
 """
 return []

[docs] def analog_signals_by_segment(self):
 """ Return a dictionary (indexed by Segment) of lists of
 AnalogSignal objects.

 If analog signals not attached to a Segment are selected, their
 dictionary key will be ``DataProvider.no_segment``.
 """
 return {}

[docs] def analog_signals_by_channel(self):
 """ Return a dictionary (indexed by RecordingChannel) of lists
 of AnalogSignal objects.

 If analog signals not attached to a RecordingChannel are selected,
 their dictionary key will be ``DataProvider.no_channel``.
 """
 return {}

[docs] def analog_signals_by_channel_and_segment(self):
 """ Return a dictionary (indexed by RecordingChannel) of
 dictionaries (indexed by Segment) of AnalogSignal lists.

 If analog signals not attached to a Segment or
 RecordingChannel are selected, their dictionary key will be
 ``DataProvider.no_segment`` or ``DataProvider.no_channel``,
 respectively.
 """
 return {}

[docs] def analog_signals_by_segment_and_channel(self):
 """ Return a dictionary (indexed by Segment) of
 dictionaries (indexed by RecordingChannel) of AnalogSignal lists.

 If analog signals not attached to a Segment or
 RecordingChannel are selected, their dictionary key will be
 ``DataProvider.no_segment`` or ``DataProvider.no_channel``,
 respectively.
 """
 return self._invert_indices(
 self.analog_signals_by_channel_and_segment())

[docs] def num_analog_signal_arrays(self):
 """ Return the number of AnalogSignalArray objects.
 """
 return 0

[docs] def analog_signal_arrays(self):
 """ Return a list of AnalogSignalArray objects.
 """
 return []

[docs] def analog_signal_arrays_by_segment(self):
 """ Return a dictionary (indexed by Segment) of lists of
 AnalogSignalArray objects.

 If analog signals arrays not attached to a Segment are selected,
 their dictionary key will be ``DataProvider.no_segment``.
 """
 return {}

[docs] def analog_signal_arrays_by_channelgroup(self):
 """ Return a dictionary (indexed by RecordingChannelGroup) of
 lists of AnalogSignalArray objects.

 If analog signals arrays not attached to a RecordingChannel are
 selected, their dictionary key will be
 ``DataProvider.no_channelgroup``.
 """
 return {}

[docs] def analog_signal_arrays_by_channelgroup_and_segment(self):
 """ Return a dictionary (indexed by RecordingChannelGroup) of
 dictionaries (indexed by Segment) of AnalogSignalArray objects.

 If there are multiple analog signals in one RecordingChannel for
 the same Segment, only the first will be contained in the returned
 dictionary. If analog signal arrays not attached to a Segment or
 RecordingChannelGroup are selected, their dictionary key will be
 ``DataProvider.no_segment`` or ``DataProvider.no_channelgroup``,
 respectively.
 """
 return {}

[docs] def analog_signal_arrays_by_segment_and_channelgroup(self):
 """ Return a dictionary (indexed by RecordingChannelGroup) of
 dictionaries (indexed by Segment) of AnalogSignalArray objects.

 If there are multiple analog signals in one RecordingChannel for
 the same Segment, only the first will be contained in the returned
 dictionary. If analog signal arrays not attached to a Segment or
 RecordingChannelGroup are selected, their dictionary key will be
 ``DataProvider.no_segment`` or ``DataProvider.no_channelgroup``,
 respectively.
 """
 return self._invert_indices(
 self.analog_signal_arrays_by_channelgroup_and_segment())

[docs] def data_dict(self):
 """ Return a dictionary with all information to serialize the
 object.
 """
 return {}

 @classmethod
[docs] def from_data(cls, data, progress=None):
 """ Create a new `DataProvider` object from a dictionary. This
 method is mostly for internal use.

 The respective type of `DataProvider` (e.g.
 :class:`spykeviewer.plugin_framework.data_provider_neo.DataProviderNeo`
 has to be imported in the environment where this function is
 called.

 :param dict data: A dictionary containing data from a `DataProvider`
 object, as returned by :func:`data_dict`.
 :param ProgressIndicator progress: The object where loading progress
 will be indicated.
 """
 if progress:
 return cls._factories[data['type']](data, progress)
 return cls._factories[data['type']](data)

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

search.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_static/comment-close.png

_static/up-pressed.png

_modules/spykeutils/progress_indicator.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 		spykeutils »

 Source code for spykeutils.progress_indicator

import functools

[docs]class CancelException(Exception):
 """ This is raised when a user cancels a progress process. It is used
 by :class:`ProgressIndicator` and its descendants.
 """
 pass

[docs]def ignores_cancel(function):
 """ Decorator for functions that should ignore a raised
 :class:`CancelException` and just return nothing in this case
 """
 @functools.wraps(function)
 def inner(*args, **kwargs):
 try:
 return function(*args, **kwargs)
 except CancelException:
 return
 return inner

[docs]class ProgressIndicator(object):
 """ Base class for classes indicating progress of a long operation.

 This class does not implement any of the methods and can be used
 as a dummy if no progress indication is needed.
 """

[docs] def set_ticks(self, ticks):
 """ Set the required number of ticks before the operation is done.

 :param int ticks: The number of steps that the operation will take.
 """
 pass

[docs] def begin(self, title=''):
 """ Signal that the operation starts.

 :param string title: The name of the whole operation.
 """
 pass

[docs] def step(self, num_steps=1):
 """ Signal that one or more steps of the operation were completed.

 :param int num_steps: The number of steps that have been completed.
 """
 pass

[docs] def set_status(self, new_status):
 """ Set status description.

 :param string new_status: A description of the current status.
 """
 pass

[docs] def done(self):
 """ Signal that the operation is done. """
 pass

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 All modules for which code is available

		spykeutils

		spykeutils.conversions

		spykeutils.correlations

		spykeutils.plugin.analysis_plugin

		spykeutils.plugin.data_provider

		spykeutils.progress_indicator

		spykeutils.rate_estimation

		spykeutils.sorting_quality_assesment

		spykeutils.stationarity

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_static/plus.png

_static/down.png

_static/comment.png

_images/psth.png
Rate (Hz)

2,000

T T
4.000
Interval length (ms)

T
6.000

8.000

_static/ajax-loader.gif

_modules/spykeutils.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 Source code for spykeutils

"""
.. autoclass:: spykeutils.SpykeException

:mod:`conversions` Module

.. automodule:: spykeutils.conversions
 :members:
 :undoc-members:
 :show-inheritance:

:mod:`correlations` Module

.. automodule:: spykeutils.correlations

:mod:`progress_indicator` Module

.. automodule:: spykeutils.progress_indicator
 :members:
 :undoc-members:
 :show-inheritance:

:mod:`rate_estimation` Module

.. automodule:: spykeutils.rate_estimation
 :members:
 :exclude-members: binned_spike_trains, psth, spike_density_estimation

:mod:`sorting_quality_assesment` Module

.. automodule:: spykeutils.sorting_quality_assesment
 :members:
 :undoc-members:
 :show-inheritance:

:mod:`staionarity` Module

.. automodule:: spykeutils.stationarity
 :members:
 :exclude-members: spike_amplitude_histogram
"""

__version__ = '0.2.0'

[docs]class SpykeException(Exception):
 """ Exception thrown when a function in spykeutils encounters a
 problem that is not covered by standard exceptions.

 When using Spyke Viewer, these exceptions will be caught and
 shown in the GUI, while general exceptions will not be caught
 (and therefore be visible in the console) for easier
 debugging.
 """
 pass

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_static/file.png

_modules/spykeutils/stationarity.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 		spykeutils »

 Source code for spykeutils.stationarity

"""
.. autofunction:: spike_amplitude_histogram(trains, num_bins, uniform_y_scale=True, unit=uV, progress=None)
"""
import scipy as sp
import quantities as pq

from progress_indicator import ProgressIndicator
from . import SpykeException

[docs]def spike_amplitude_histogram(trains, num_bins, uniform_y_scale=True,
 unit=pq.uV, progress=None):
 """ Return a spike amplitude histogram.

 The resulting is useful to assess the drift in spike amplitude over a longer
 recording. It shows histograms (one for each ``trains`` entry, e.g. segment)
 of maximum and minimum spike amplitudes.

 :param list trains: A list of lists of SpikeTrain objects. Each entry of
 the outer list will be one point on the x-axis (they could correspond
 to segments), all amplitude occurences of spikes contained in the
 inner list will be added up.
 :param int num_bins: Number of bins for the histograms.
 :param bool uniform_y_scale: If True, the histogram for each channel
 will use the same bins. Otherwise, the minimum bin range is computed
 separately for each channel.
 :param Quantity unit: Unit of Y-Axis.
 :param progress: Set this parameter to report progress.
 :type progress: :class:`spykeutils.progress_indicator.ProgressIndicator`
 :return: A tuple with three values:

 * A three-dimensional histogram matrix, where the first dimension
 corresponds to bins, the second dimension to the entries of
 ``trains`` (e.g. segments) and the third dimension to channels.
 * A list of the minimum amplitude value for each channel (all values
 will be equal if ``uniform_y_scale`` is true).
 * A list of the maximum amplitude value for each channel (all values
 will be equal if ``uniform_y_scale`` is true).
 :rtype: (ndarray, list, list)
 """
 if not progress:
 progress = ProgressIndicator()

 num_channels = 1
 for t in trains:
 if not t:
 continue
 num_channels = t[0].waveforms.shape[2]
 break

 progress.set_ticks(2*len(trains))
 progress.set_status('Calculating Spike Amplitude Histogram')

 # Find maximum and minimum amplitudes on all channels
 up = [0] * num_channels
 down = [0] * num_channels
 for t in trains:
 for s in t:
 if s.waveforms is None:
 continue
 if s.waveforms.shape[2] != num_channels:
 raise SpykeException('All spikes need to have the same ' +
 'numer of channels for Spike Amplitude Histogram!')
 a = sp.asarray(s.waveforms.rescale(unit))
 u = a.max(1)
 d = a.min(1)
 for c in xrange(num_channels):
 up[c] = max(up[c], sp.stats.mstats.mquantiles(
 u[:,c], [0.999])[0])
 down[c] = min(down[c], sp.stats.mstats.mquantiles(
 d[:,c], [0.001])[0])
 progress.step()

 if uniform_y_scale:
 up = [max(up)] * num_channels
 down = [min(down)] * num_channels

 # Create histogram
 bins = [sp.linspace(down[c],up[c], num_bins+1)
 for c in xrange(num_channels)]
 hist = sp.zeros((num_bins, len(trains), num_channels))
 for i, t in enumerate(trains):
 for s in t:
 if s.waveforms is None:
 continue
 a = sp.asarray(s.waveforms.rescale(unit))
 upper = a.max(1)
 lower = a.min(1)
 for c in xrange(num_channels):
 hist[:,i,c] += sp.histogram(upper[:,c], bins[c])[0]
 hist[:,i,c] += sp.histogram(lower[:,c], bins[c])[0]
 progress.step()

 return hist, down, up

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_modules/spykeutils/rate_estimation.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 		spykeutils »

 Source code for spykeutils.rate_estimation

"""
.. autofunction:: binned_spike_trains(trains, bin_size, start=0 ms, stop=None)
.. autofunction:: psth(trains, bin_size, rate_correction=True, start=0 ms, stop=None)
.. autofunction:: spike_density_estimation(trains, start=0 ms, stop=None, evaluation_points=None, kernel=gauss_kernel, kernel_size=100 ms, optimize_steps=None, progress=None)
"""
from __future__ import division

import scipy as sp
import quantities as pq
import neo
from progress_indicator import ProgressIndicator
from . import SpykeException

def _binned_spike_trains(trains, bins):
 """ Return a binned representation of SpikeTrain objects.

 :param sequencs trains: A sequence of SpikeTrain objects.
 :param bins: The bin edges, including the rightmost edge.
 :type bins: Quantity 1D
 :returns: List of one-dimensional arrays of spike counts.
 :rtype: list
 """
 counts = []
 for t in trains:
 counts.append(sp.histogram(t.rescale(bins.units), bins)[0])

 return counts

[docs]def binned_spike_trains(trains, bin_size, start=0*pq.ms, stop=None):
 """ Return dictionary of binned rates for a dictionary of
 SpikeTrain lists.

 :param dict trains: A sequence of `SpikeTrain` lists.
 :param bin_size: The desired bin size (as a time quantity).
 :type bin_size: Quantity scalar
 :type start: The desired time for the start of the first bin.
 It will be recalculated if there are spike trains which
 start later than this time.
 :type start: Quantity scalar
 :param stop: The desired time for the end of the last bin. It will
 be recalculated if there are spike trains which end earlier
 than this time.
 :type stop: Quantity scalar
 :returns: A dictionary (with the same indices as ``trains``) of lists
 of spike train counts and the bin borders.
 :rtype: dict, Quantity 1D
 """
 # Do not create bins that do not include all spike trains
 max_start, max_stop = minimum_spike_train_interval(trains)

 start = max(start, max_start)
 start.units = bin_size.units
 if stop is not None:
 stop = min(stop, max_stop)
 else:
 stop = max_stop
 stop.units = bin_size.units

 # Calculate bin size
 bins = sp.arange(start, stop, bin_size)*bin_size.units

 # Create dictionary for all SpikeTrain lists
 binned = {}
 for s in trains:
 b = _binned_spike_trains(trains[s], bins)
 if b:
 binned[s] = b

 return binned, bins

[docs]def psth(trains, bin_size, rate_correction=True, start=0*pq.ms, stop=None):
 """ Return dictionary of peri stimulus time histograms for a dictionary
 of SpikeTrain lists.

 :param dict trains: A dictionary of lists of SpikeTrain objects.
 :param bin_size: The desired bin size (as a time quantity).
 :type bin_size: Quantity scalar
 :param bool rate_correction: Determines if a rates (``True``) or
 counts (``False``) are returned.
 :param start: The desired time for the start of the first bin. It
 will be recalculated if there are spike trains which start
 later than this time.
 :type start: Quantity scalar
 :param stop: The desired time for the end of the last bin. It will
 be recalculated if there are spike trains which end earlier
 than this time.
 :type stop: Quantity scalar
 :returns: A dictionary (with the same indices as ``trains``) of arrays
 containing counts (or rates if ``rate_correction`` is ``True``)
 and the bin borders.
 :rtype: dict, Quantity 1D
 """
 if not trains:
 raise SpykeException('No spike trains for PSTH!')

 binned, bins = binned_spike_trains(trains, bin_size, start, stop)

 cumulative = {}
 time_multiplier = 1.0 / float(bin_size.rescale(pq.s))
 for u in binned:
 if rate_correction:
 cumulative[u] = sp.mean(sp.array(binned[u]), 0)
 else:
 cumulative[u] = sp.sum(sp.array(binned[u]), 0)
 cumulative[u] *= time_multiplier

 return cumulative, bins

[docs]def aligned_spike_trains(trains, events, copy=True):
 """ Return a list of spike trains aligned to an event (the event will
 be time 0 on the returned trains).

 :param dict trains: A list of SpikeTrain objects.
 :param dict events: A dictionary of Event objects, indexed by segment.
 These events (in case of lists, always the first element in the list)
 will be used to align the spike trains and will be at time 0 for
 the aligned spike trains.
 :param bool copy: Determines if aligned copies of the original
 spike trains will be returned. If not, every spike train needs
 exactly one corresponding event, otherwise a ``ValueError`` will
 be raised. Otherwise, entries with no event will be ignored.
 """
 ret = []
 for t in trains:
 s = t.segment
 if s not in events:
 if not copy:
 raise ValueError(
 'Cannot align spike trains: At least one segment does' +
 'not have an align event.')
 continue

 if copy:
 st = t.rescale(t.units)
 else:
 st = t

 e = events[s]
 st -= e.time
 st.t_stop -= e.time
 st.t_start -= e.time
 ret.append(st)

 return ret

[docs]def minimum_spike_train_interval(trains):
 """ Computes the minimum starting time and maximum end time that all
 given spike trains share.

 :param dict trains: A dictionary of sequences of SpikeTrain
 objects.
 :returns: Maximum shared start time and minimum shared stop time.
 :rtype: Quantity scalar, Quantity scalar
 """
 # Hoping that nobody needs a 1000 year long spike train
 start = -1000 * pq.year
 stop = 1000 * pq.year

 # Load data and find shortest spike train
 for st in trains.itervalues():
 # Minimum length of spike of all spike trains for this unit
 start = max(start, max((t.t_start for t in st)))
 stop = min(stop, min((t.t_stop for t in st)))

 return start, stop

def gauss_kernel(x, kernel_size):
 return 1.0 / (sp.sqrt(2*sp.pi) * kernel_size) * \
 sp.exp(-x**2 / (2 * kernel_size)**2)

[docs]def spike_density_estimation(trains, start=0*pq.ms, stop=None,
 evaluation_points=None, kernel=gauss_kernel,
 kernel_size=100*pq.ms, optimize_steps=None,
 progress=None):
 """ Create a spike density estimation from a dictionary of
 lists of SpikeTrain objects. The spike density estimations give
 an estimate of the instantaneous rate. Optionally finds optimal
 kernel size for given data.

 :param dict trains: A dictionary of SpikeTrain lists.
 :param start: The desired time for the start of the first bin. It
 will be recalculated if there are spike trains which start later
 than this time. This parameter can be negative (which could be
 useful when aligning on events).
 :type start: Quantity scalar
 :param stop: The desired time for the end of the last bin. It will
 be recalculated if there are spike trains which end earlier
 than this time.
 :type stop: Quantity scalar
 :param evaluation_points: An array of time points at which the
 density estimation is evaluated to produce the data. If this
 is None, 1000 equally spaced points covering the range of the
 input spike trains will be used.
 :type evaluation_points: Quantity 1D
 :param func kernel: The kernel function to use, should accept
 two parameters: A ndarray of distances and a kernel size.
 The total area under the kernel function sould be 1.
 Default: Gaussian kernel
 :param kernel_size: A uniform kernel size for all spike trains.
 Only used if optimization of kernel sizes is not used.
 :type kernel_size: Quantity scalar
 :param optimize_steps: An array of time lengths that will be
 considered in the kernel width optimization. Note that the
 optimization assumes a Gaussian kernel and will most likely
 not give the optimal kernel size if another kernel is used.
 If None, ``kernel_size`` will be used.
 :type optimize_steps: Quantity 1D
 :param progress: Set this parameter to report progress.
 :type progress: :class:`spykeutils.progress_indicator.ProgressIndicator`

 :returns: Three values:

 * A dictionary of the spike density estimations (Quantity 1D in
 Hz). Indexed the same as ``trains``.
 * A dictionary of kernel sizes (Quantity scalars). Indexed the
 same as ``trains``.
 * The used evaluation points.
 :rtype: dict, dict, Quantity 1D
 """
 if not progress:
 progress = ProgressIndicator()

 if optimize_steps is None or len(optimize_steps) < 1:
 units = kernel_size.units
 kernel_size = {u:kernel_size for u in trains}
 else:
 # Find optimal kernel size for all spike train sets
 progress.set_ticks(len(optimize_steps)*len(trains))
 progress.set_status('Calculating optimal kernel size')
 units = optimize_steps.units
 kernel_size = {}
 for u,t in trains.iteritems():
 c = collapsed_spike_trains(t)
 kernel_size[u] = optimal_gauss_kernel_size(c, optimize_steps,
 progress)

 # Prepare evaluation points
 if evaluation_points is None:
 max_start, max_stop = minimum_spike_train_interval(trains)

 start = max(start, max_start)
 start.units = units
 if stop is not None:
 stop = min(stop, max_stop)
 else:
 stop = max_stop
 stop.units = units

 evaluation_points = sp.linspace(start, stop, 1000)

 progress.set_ticks(len(trains) * len(evaluation_points))
 progress.set_status('Creating spike density plot')
 # Calculate KDEs
 kde = {}
 for u,t in trains.iteritems():
 this_kde = []

 # Collapse spike trains
 collapsed = sp.asarray(collapsed_spike_trains(t).rescale(units))
 ksize = float(kernel_size[u])

 # Create density estimation
 for p in evaluation_points:
 dist = collapsed - float(p)

 this_kde.append(sum(kernel(dist, ksize)))
 progress.step()

 kde[u] = sp.asarray(this_kde) / len(trains[u]) / units
 kde[u].units = pq.Hz
 return kde, kernel_size, evaluation_points

[docs]def collapsed_spike_trains(trains):
 """ Return a superposition of a list of spike trains.

 :param iterable trains: A list of SpikeTrain objects
 :returns: A SpikeTrain object containing all spikes of the given
 SpikeTrain objects.
 """
 if not trains:
 return neo.SpikeTrain([], 0)

 start = min((t.t_start for t in trains))
 stop = max((t.t_stop for t in trains))

 collapsed = []
 for t in trains:
 collapsed.extend(sp.asarray(t.rescale(stop.units)))

 return neo.SpikeTrain(collapsed*stop.units, t_stop=stop, t_start=start)

[docs]def optimal_gauss_kernel_size(train, optimize_steps, progress=None):
 """ Return the optimal kernel size for a spike density estimation
 of a SpikeTrain for a gaussian kernel. This function takes a single
 spike train, which can be a superposition of multiple spike trains
 (created with :func:`collapsed_spike_trains`) that should be included
 in a spike density estimation.
 See (Shimazaki, Shinomoto. Journal of Computational Neuroscience. 2010).

 :param SpikeTrain train: The spike train for which the kernel
 size should be optimized.
 :param optimize_steps: Array of kernel sizes to try (the best of
 these sizes will be returned).
 :type optimize_steps: Quantity 1D
 :param progress: Set this parameter to report progress. Will be
 advanced by len(`optimize_steps`) steps.
 :type progress: :class:`spykeutils.progress_indicator.ProgressIndicator`
 :returns: Best of the given kernel sizes
 :rtype: Quantity scalar
 """
 if not progress:
 progress = ProgressIndicator()

 x = sp.asarray(train.rescale(optimize_steps.units))
 steps = sp.asarray(optimize_steps)

 N = len(train)
 tau = sp.triu(sp.vstack([x] * N) - sp.vstack([x] * N).T, 1)
 idx = sp.triu(sp.ones((N,N)), 1)
 TAU = tau.T[idx.T==1]**2

 C = {}
 for s in steps:
 C[s] = N/s + 1/s * sum(2 * sp.exp(-TAU/(4 * s**2)) -
 4 * sp.sqrt(2) * sp.exp(-TAU/(2 * s**2)))
 progress.step()

 # Return kernel size with smallest cost
 return min(C, key=C.get)*train.units

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_modules/spykeutils/sorting_quality_assesment.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 		spykeutils »

 Source code for spykeutils.sorting_quality_assesment

""" Functions for estimating the quality of spike sorting results. These
functions estimate false positive and false negative fractions.
"""

from __future__ import division

import scipy as sp
from scipy.spatial.distance import cdist
import quantities as pq
import neo

from spykeutils.progress_indicator import ProgressIndicator

[docs]def get_refperiod_violations(spike_trains, refperiod, progress=None):
 """ Return the refractory period violations in the given spike trains
 for the specified refractory period.

 :param dict spike_trains: Dictionary of lists of SpikeTrain objects.
 :param refperiod: The refractory period (time).
 :type refperiod: Quantity scalar
 :param progress: Set this parameter to report progress.
 :type progress: :class:`spykeutils.progress_indicator.ProgressIndicator`
 :returns: Two values:

 * The total number of violations.
 * A dictionary (with the same indices as ``spike_trains``) of
 arrays with violation times (Quantity 1D with the same unit as
 ``refperiod``) for each spike train.
 :rtype: int, dict """
 if type(refperiod) != pq.Quantity or \
 refperiod.simplified.dimensionality != pq.s.dimensionality:
 raise ValueError('refperiod must be a time quantity!')

 if not progress:
 progress = ProgressIndicator()

 total_violations = 0
 violations = {}
 for u, tL in spike_trains.iteritems():
 violations[u] = []
 for i,t in enumerate(tL):
 st = t.copy()
 st.sort()
 isi = sp.diff(st)

 violations[u].append(st[isi < refperiod].rescale(refperiod.units))
 total_violations += len(violations[u][i])

 progress.step()

 return total_violations, violations

[docs]def calculate_refperiod_fp(num_spikes, refperiod, violations, total_time):
 """ Return the rate of false positives calculated from refractory period
 calculations for each unit. The equation used is described in
 (Hill et al. The Journal of Neuroscience. 2011).

 :param dict num_spikes: Dictionary of total number of spikes,
 indexed by unit.
 :param refperiod: The refractory period (time). If the spike sorting
 algorithm includes a censored period (a time after a spike during
 which no new spikes can be found), subtract it from the refractory
 period before passing it to this function.
 :type refperiod: Quantity scalar
 :param dict violations: Dictionary of total number of violations,
 indexed the same as num_spikes.
 :param total_time: The total time in which violations could have occured.
 :type total_time: Quantity scalar

 :returns: A dictionary of false positive rates indexed by unit.
 Note that values above 0.5 can not be directly interpreted as a
 false positive rate! These very high values can e.g. indicate
 that the chosen refractory period was too large.
 """
 if type(refperiod) != pq.Quantity or \
 refperiod.simplified.dimensionality != pq.s.dimensionality:
 raise ValueError('refperiod must be a time quantity!')

 fp = {}
 factor = total_time / (2 * refperiod)
 for u,n in num_spikes.iteritems():
 if n == 0:
 fp[u] = 0
 continue
 zw = (violations[u] * factor / n**2).simplified

 if zw > 0.25:
 fp[u] = 0.5 + sp.sqrt(0.25 - zw).imag
 continue
 fp[u] = 0.5 - sp.sqrt(0.25 - zw)

 return fp

[docs]def calculate_overlap_fp_fn(means, spikes):
 """ Return a dict of tuples (False positive rate, false negative rate)
 indexed by unit.

 Details for the calculation can be found in
 (Hill et al. The Journal of Neuroscience. 2011). This function works on
 prewhitened data, which means it assumes that all clusters have a uniform
 normal distribution. Data can be prewhitened using the noise covariance
 matrix.

 The calculation for total false positive and false negative rates does
 not follow (Hill et al. The Journal of Neuroscience. 2011), where a
 simple addition of pairwise probabilities is proposed. Instead, the
 total error probabilities are estimated using all clusters at once.

 :param dict means: Dictionary of prewhitened cluster means
 (e.g. unit templates) indexed by unit as Spike objects or
 numpy arrays for all units.
 :param dict spikes: Dictionary, indexed by unit, of lists of prewhitened
 spike waveforms as Spike objects or numpy arrays for all units.
 :returns: Two values:

 * A dictionary (indexed by unit) of total
 (false positives, false negatives) tuples.
 * A dictionary of dictionaries, both indexed by units,
 of pairwise (false positives, false negatives) tuples.
 :rtype: dict, dict
 """
 units = means.keys()
 if not units:
 return {}, {}

 if len(units) == 1:
 return {units[0]: (0.0, 0.0)}, {}

 prior = {}
 total_spikes = 0
 for u, mean in means.iteritems():
 if isinstance(mean, neo.Spike):
 means[u] = sp.asarray(mean.waveform.rescale(pq.uV)).reshape(-1)
 total_spikes += len(spikes[u])
 if total_spikes < 1:
 return {u: (0.0, 0.0) for u in units}, {}

 false_positive = {}
 false_negative = {}
 for u, s in spikes.iteritems():
 prior[u] = len(s) / total_spikes
 false_positive[u] = 0
 false_negative[u] = 0

 # Arrays of unnormalized posteriors (likelihood times prior)
 # for all units
 posterior = {}

 # Convert Spike objects to arrays
 for u, spks in spikes.iteritems():
 spikelist = []
 for s in spks:
 if isinstance(s, neo.Spike):
 spikelist.append(
 sp.asarray(s.waveform.rescale(pq.uV)).reshape(-1))
 else:
 spikelist.append(s)
 spikes[u] = spikelist

 # Calculate posteriors
 for u1 in units[:]:
 if not spikes[u1]:
 units.remove(u1)
 continue
 posterior[u1] = {}
 for u2, mean in means.iteritems():
 llh = _multi_norm(sp.array(spikes[u1]), mean)
 posterior[u1][u2] = llh*prior[u2]
 #print posterior[u1][u2]

 # Calculate pairwise false positives/negatives
 singles = {u:{} for u in units}
 for i, u1 in enumerate(units):
 u1 = units[i]
 for u2 in units[i+1:]:
 f1 = sp.sum(posterior[u1][u2] /
 (posterior[u1][u1] + posterior[u1][u2]),
 dtype=sp.double)

 f2 = sp.sum(posterior[u2][u1] /
 (posterior[u2][u1] + posterior[u2][u2]),
 dtype=sp.double)

 singles[u1][u2] = (f1 / len(spikes[u1]) if spikes[u1] else 0,
 f2 / len(spikes[u1]) if spikes[u1] else 0)
 singles[u2][u1] = (f2 / len(spikes[u2]) if spikes[u2] else 0,
 f1 / len(spikes[u2]) if spikes[u2] else 0)

 # Calculate complete false positives/negatives with extended bayes
 for u1 in units:
 numerator = posterior[u1][u1]
 normalizer = sum(posterior[u1][u2] for u2 in units)
 false_positive[u1] = sp.sum((normalizer-numerator)/normalizer)

 other_units = units[:]
 other_units.remove(u1)
 numerator = sp.vstack((posterior[u][u1] for u in other_units))
 normalizer = sp.vstack(sum(posterior[u][u2] for u2 in units) for u in other_units)
 false_negative[u1] = sp.sum(numerator/normalizer)

 # Prepare return values, convert sums to means
 totals = {}
 for u,fp in false_positive.iteritems():
 fn = false_negative[u]
 if not spikes[u]:
 totals[u] = (0,0)
 else:
 num = len(spikes[u])
 totals[u] = (fp / num, fn / num)
 return totals, singles

def _multi_norm(x, mean):
 """ Evaluate pdf of multivariate normal distribution with a mean
 at rows of x with high precision.
 """
 d = x.shape[1]
 fac = (2*sp.pi) ** (-d/2.0)
 y = cdist(x, sp.atleast_2d(mean), 'sqeuclidean') * -0.5
 return fac * sp.exp(sp.longdouble(y))

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_images/sde.png
mation

——— Unit1, Kemel width 1355.59 ms.

Unit 2, Kerel width 328.60 ms

_modules/spykeutils/conversions.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 		spykeutils »

 Source code for spykeutils.conversions

import scipy as sp
import neo

from . import SpykeException

[docs]def spike_train_to_spikes(spike_train, include_waveforms = True):
 """ Return a list of spikes for a spike train.

 Note that while the created spikes have references to the same segment and
 unit as the spike train, the relationships in the other direction are
 not automatically created (the spikes are not attached to the unit or
 segment). Other properties like annotations are not copied or referenced
 in the created spikes.

 :param SpikeTrain spike_train: A spike train from which the Spike objects
 are constructed.
 :param bool include_waveforms: Determines if the ``waveforms`` property is
 converted to the spike waveforms. If ``waveforms`` is None, this
 parameter has no effect.
 :returns: A list of Spike objects, one for every spike in ``spike_train``.
 :rtype: list
 """
 waves = None
 if include_waveforms:
 waves = spike_train.waveforms

 spikes = []
 for i, t in enumerate(spike_train):
 s = neo.Spike(t, sampling_rate=spike_train.sampling_rate,
 left_sweep=spike_train.left_sweep)
 if waves is not None:
 s.waveform=waves[i, :, :]
 s.unit = spike_train.unit
 s.segment = spike_train.segment
 spikes.append(s)

 return spikes

[docs]def spikes_to_spike_train(spikes, include_waveforms=True):
 """ Return a spike train for a list of spikes.

 All spikes must have an identical left sweep, the same unit and the same
 segment, otherwise a ``SpykeException`` is raised.

 Note that while the created spike train has references to the same
 segment and unit as the spikes, the relationships in the other direction
 are not automatically created (the spike train is not attached to the
 unit or segment). Other properties like annotations are not copied or
 referenced in the created spike train.

 :param spikes: A list of spike objects from which the SpikeTrain object
 is constructed.
 :param bool include_waveforms: Determines if the waveforms from the Spike
 objects are used to fill the ``waveforms`` property of the resulting
 spike train. If ``True``, all spikes need a ``waveform`` property
 with the same shape or a ``SpykeException`` is raised (or the
 ``waveform`` property needs to be ``None`` for all spikes).
 :return: A SpikeTrain object including all elements of ``spikes``.
 :rtype: :class:`neo.core.SpikeTrain`
 """
 if not spikes:
 raise SpykeException('No spikes to create spike train!')

 tu = spikes[0].time.units
 times = sp.zeros(len(spikes)) * tu
 s = spikes[0].segment
 u = spikes[0].unit
 ls = spikes[0].left_sweep

 if include_waveforms and spikes[0].waveform is not None:
 sh = spikes[0].waveform.shape
 wu = spikes[0].waveform.units
 waves = sp.zeros((len(spikes), sh[0], sh[1])) * wu
 else:
 waves = None
 sh = None

 for i, spike in enumerate(spikes):
 if (u != spike.unit or s != spike.segment or
 ls != spike.left_sweep):
 raise SpykeException('Cannot create spike train from spikes with '
 'nonuniform properties!')

 times[i] = spikes[i].time

 if include_waveforms:
 if spike.waveform is None:
 if waves is not None:
 raise SpykeException('Cannot create spike train from '
 'spikes where some waveforms are '
 'None')
 elif sh != spike.waveform.shape:
 raise SpykeException('Cannot create spike train from spikes '
 'with nonuniform waveform shapes!')
 if waves is not None:
 waves[i,:,:] = spike.waveform

 ret = neo.SpikeTrain(times, t_start=times.min(), t_stop=times.max(),
 waveforms=waves, left_sweep=ls)
 ret.unit = u
 ret.segment = s
 ret.left_sweep = ls
 return ret

[docs]def analog_signal_array_to_analog_signals(signal_array):
 """ Return a list of analog signals for an analog signal array.

 If ``signal_array`` is attached to a recording channel group with exactly
 is many channels as there are channels in ``signal_array``, each created
 signal will be assigned the corresponding channel. If the attached
 recording channel group has only one recording channel, all created signals
 will be assigned to this channel. In all other cases, the created
 signal will not have a reference to a recording channel.

 Note that while the created signals may have references to a segment and
 channels, the relationships in the other direction are
 not automatically created (the signals are not attached to the recording
 channel or segment). Other properties like annotations are not copied or
 referenced in the created analog signals.

 :param signal_array: An analog signal array from which the AnalogSignal
 objects are constructed.
 :type signal_array: :class:`neo.core.AnalogSignalArray`
 :return: A list of analog signals, one for every channel in
 ``signal_array``.
 :rtype: list
 """
 signals = []
 rcg = signal_array.recordingchannelgroup

 for i in xrange(signal_array.shape[1]):
 s = neo.AnalogSignal(signal_array[:,i],
 t_start = signal_array.t_start,
 sampling_rate=signal_array.sampling_rate)
 if len(rcg.recordingchannels) == 1:
 s.recordingchannel = rcg.recordingchannels[0]
 elif len(rcg.recordingchannels) == signal_array.shape[1]:
 s.recordingchannel = rcg.recordingchannels[i]
 s.segment = signal_array.segment
 signals.append(s)

 return signals

[docs]def event_array_to_events(event_array):
 """ Return a list of events for an event array.

 Note that while the created events may have references to a segment,
 the relationships in the other direction are not automatically created
 (the events are not attached to the segment). Other properties like
 annotations are not copied or referenced in the created events.

 :param event_array: An event array from which the Event objects are
 constructed.
 :type event_array: :class:`neo.core.EventArray`
 :return: A list of events, one for of the events in ``event_array``.
 :rtype: list
 """
 events = []
 for i, t in enumerate(event_array.times):
 e = neo.Event(t, event_array.labels[i])
 e.segment = event_array.segment
 events.append(e)
 return events

[docs]def epoch_array_to_epochs(epoch_array):
 """ Return a list of epochs for an epoch array.

 Note that while the created epochs may have references to a segment,
 the relationships in the other direction are not automatically created
 (the events are not attached to the segment). Other properties like
 annotations are not copied or referenced in the created epochs.

 :param epoch_array: A period array from which the Epoch objects are
 constructed.
 :type epoch_array: :class:`neo.core.EpochArray`
 :return: A list of events, one for of the events in ``epoch_array``.
 :rtype: list
 """
 periods = []
 for i, t in enumerate(epoch_array.times):
 p = neo.Epoch(t, epoch_array.durations[i], epoch_array.labels[i])
 p.segment = epoch_array.segment
 periods.append(p)
 return periods

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_modules/spykeutils/correlations.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 		spykeutils »

 Source code for spykeutils.correlations

"""
.. autofunction:: correlogram(trains, bin_size, max_lag=500 ms, border_correction=True, unit=ms, progress=None)
"""
import scipy as sp
from collections import OrderedDict

import quantities as pq

from progress_indicator import ProgressIndicator
from . import SpykeException

[docs]def correlogram(trains, bin_size, max_lag=500*pq.ms, border_correction=True,
 unit=pq.ms, progress=None):
 """ Return (cross-)correlograms from a dictionary of SpikeTrain
 lists for different units.

 :param dict trains: Dictionary of SpikeTrain lists.
 :param bin_size: Bin size (time).
 :type bin_size: Quantity scalar
 :param max_lag: Cut off (end time of calculated correlogram).
 :type max_lag: Quantity scalar
 :param bool border_correction: Apply correction for less data at higher
 timelags. Not perfect for bin_size != 1*``unit``, especially with
 large ``max_lag`` compared to length of spike trains.
 :param Quantity unit: Unit of X-Axis.
 :param progress: A ProgressIndicator object for the operation.
 :type progress: :class:`spykeutils.progress_indicator.ProgressIndicator`
 :returns: Two values:

 * An ordered dictionary indexed with the indices of ``trains`` of
 ordered dictionaries indexed with the same indices. Entries of
 the inner dictionaries are the resulting (cross-)correlograms as
 numpy arrays. All crosscorrelograms can be indexed in two
 different ways: ``c[index1][index2]`` and ``c[index2][index1]``.
 * The bins used for the correlogram calculation.
 :rtype: dict, Quantity 1D
 """
 if not progress:
 progress = ProgressIndicator()

 bin_size.rescale(unit)
 max_lag.rescale(unit)

 # Create bins, making sure that 0 is at the center of central bin
 half_bins = sp.arange(bin_size / 2, max_lag, bin_size)
 all_bins = list(reversed(-half_bins))
 all_bins.extend(half_bins)
 bins = sp.array(all_bins) * unit
 middle_bin = len(bins) / 2 - 1

 indices = sorted(trains.keys(), key=lambda (u):u.name if u else None)
 num_trains = len(trains[indices[0]])
 if not num_trains:
 raise SpykeException('Could not create correlogram: No spike trains!')
 for u in range(1, len(indices)):
 if len(trains[indices[u]]) != num_trains:
 raise SpykeException('Could not create correlogram: All units ' +
 'need the same number of spike trains!')

 progress.set_ticks(sp.sum(range(len(trains) + 1) * num_trains))

 corrector = 1
 if border_correction:
 # Need safe min/max functions
 def safe_max(seq):
 if len(seq) < 1:
 return 0
 return max(seq)
 def safe_min(seq):
 if len(seq) < 1:
 return 2**20 #Some arbitrary large value
 return min(seq)

 max_w = max([max([safe_max(t) for t in l])
 for l in trains.itervalues()])
 min_w = min([min([safe_min(t) for t in l])
 for l in trains.itervalues()])

 train_length = (max_w - min_w)
 l = int(round(middle_bin)) + 1
 cE = max(train_length-(l*bin_size)+1*unit, 1*unit)

 corrector = train_length / sp.concatenate(
 (sp.linspace(cE, train_length, l-1, False),
 sp.linspace(train_length, cE, l)))

 correlograms = OrderedDict()
 for i1 in xrange(len(indices)): # For each index
 # For all later indices, including itself
 for i2 in xrange(i1, len(indices)):
 histogram = sp.zeros(len(bins) - 1)
 for t in xrange(num_trains):
 train2 = trains[indices[i2]][t].rescale(unit)
 for s in trains[indices[i1]][t]:
 histogram += sp.histogram(train2,
 bins + s.rescale(unit))[0]
 if i1 == i2: # Correction for autocorrelogram
 histogram[middle_bin] -= len(train2)

 progress.step()
 crg = corrector*histogram/num_trains
 if indices[i1] not in correlograms:
 correlograms[indices[i1]] = OrderedDict()
 correlograms[indices[i1]][indices[i2]] = crg
 if i1 != i2:
 if indices[i2] not in correlograms:
 correlograms[indices[i2]] = OrderedDict()
 correlograms[indices[i2]][indices[i1]] = crg

 return correlograms, bins

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_modules/spykeutils/plugin/analysis_plugin.html

 Navigation

 		
 index

 		
 modules |

 		spykeutils 0.2.0 documentation »

 		Module code »

 		spykeutils »

 Source code for spykeutils.plugin.analysis_plugin

import hashlib
import json
import os
import tables
import time

import gui_data

class HashEntry(tables.IsDescription):
 hash = tables.StringCol(32)
 filename = tables.StringCol(992) # 1024-32 -> long filenames are possible

[docs]class AnalysisPlugin(gui_data.DataSet):
 """ Base class for Analysis plugins. Inherit this class to create a
 plugin.

 The two most important methods are :func:`get_name` and :func:`start`.
 Both should be overridden by every plugin. The class also has
 functionality for GUI configuration and saving/restoring analysis
 results.

 The GUI configuration uses :mod:`guidata`. Because `AnalysisPlugin`
 inherits from `DataSet`,
 configuration options can easily be added directly to the class
 definition. For example, the following code creates an analysis that
 has two configuration options which are used in the start() method
 to print to the console::

 from spykeutils.plugin.analysis_plugin import AnalysisPlugin

 class ExampleAnalysis(AnalysisPlugin):
 some_time = di.FloatItem('Some time', default=2.0, unit='ms')
 print_more = di.BoolItem('Print additional info', default=True)

 def start(self, current, selections):
 print 'The selected time is', some_time, 'milliseconds.'
 if print_more:
 print 'This is important additional information!'

 The class attribute ``data_dir`` contains a base directory for saving
 and loading data. It is set by Spyke Viewer to the directory specified
 in the settings. When using an AnalysisPlugin without Spyke Viewer,
 the default value is an empty string (so the current directory will
 be used) and the attribute can be set to an arbitrary directory.
 """

 data_dir = ''

 def __init__(self):
 super(AnalysisPlugin, self).__init__()
 self.__current = None
 self.__selections = None

[docs] def get_name(self):
 """ Return the name of an analysis. Override to specify analysis
 name.

 :returns: The name of the plugin.
 :rtype: str
 """
 return 'Prototype Analysis'

[docs] def start(self, current, selections):
 """ Entry point for processing. Override with analysis code.

 :param current: This data provider is used if the analysis
 should be performed on the data currently selected in the GUI.
 :type current:
 :class:`spykeviewer.plugin_framework.data_provider.DataProvider`
 :param list selections: This parameter contains all saved
 selections. It is used if an analysis needs multiple data sets.
 """
 pass

[docs] def configure(self):
 """ Configure the analysis. Override if a different or additional
 configuration apart from guidata is needed.
 """
 if self._items:
 self.edit()

[docs] def get_parameters(self):
 """ Return a dictionary of the configuration that can
 be read with :func:`deserialize_parameters`. Override both if
 non-guidata attributes need to be serialized or if some guidata
 parameters should not be serialized (e.g. they only affect the
 visual presentation).

 :returns: A dictionary of all configuration parameters.
 :rtype: dict
 """
 if not hasattr(self, '_items'):
 return {}

 ret = {}
 for i in self._items:
 v = i.get_value(self)
 if isinstance(v, str):
 ret[i._name] = unicode(v)
 else:
 ret[i._name] = v
 return ret

[docs] def set_parameters(self, parameters):
 """ Load configuration from a dictionary that has been
 created by :func:`serialize_parameters`. Override both if
 non-guidata attributes need to be serialized or if some guidata
 parameterss hould not be serialized (e.g. they only affect the
 visual presentation).

 :param dict parameters: A dictionary of all configuration
 parameters.
 """
 for n,v in parameters.iteritems():
 setattr(self, '_' + n, v)

 def _get_hash(self, selections, params, use_guiparams):
 """ Return hash and the three strings used for it
 (guidata,selections,params)
 """
 if use_guiparams:
 guidata_string = repr(sorted(self.get_parameters().items()))
 else:
 guidata_string = ''
 selection_string = json.dumps([s.data_dict() for s in selections])

 if params:
 param_string = repr(sorted(params.items()))
 else:
 param_string = ''

 md5 = hashlib.md5()
 hash_string = guidata_string + selection_string + param_string
 md5.update(hash_string)

 return md5.hexdigest(), guidata_string, selection_string, \
 param_string

[docs] def save(self, name, selections, params=None, save_guiparams=True):
 """ Return a HDF5 file object with parameters already stored.
 Save analysis results to this file.

 :param str name: The name of the results to save. A folder with
 this name will be used (and created if necessary) to store
 the analysis result files.
 :param sequence selections: A list of :class:`DataProvider` objects
 that are relevant for the analysis results.
 :param dict params: A dictionary, indexed by strings (which should
 be valid as python identifiers), with parameters apart from GUI
 configuration used to obtain the results. All keys have to be
 integers, floats, strings or lists of these types.
 :param bool save_guiparams: Determines if the guidata parameters of
 the class should be saved in the file.
 :returns: An open PyTables file object ready to be used to store
 data. Afterwards, the file has to be closed by calling the
 :func:`tables.File.close` method.
 :rtype: :class:`tables.File`
 """
 if not selections:
 selections = []

 if not os.path.exists(os.path.join(self.data_dir, name)):
 os.makedirs(os.path.join(self.data_dir, name))

 if params is None:
 params = {}

 # Use unicode parameters
 for n, v in params:
 if isinstance(v, str):
 params[n] = unicode(v)

 # Create parameter hash
 hash_, guidata_string, selection_string, param_string =\
 self._get_hash(selections, params, save_guiparams)

 # File name is current time stamp
 time_stamp = time.strftime("%Y%m%d-%H%M%S")
 file_name_base = os.path.join(self.data_dir, name, time_stamp)
 file_name = file_name_base

 # Make sure not to overwrite another file
 i = 2
 while os.path.exists(file_name):
 file_name = file_name_base + '_%d' % i
 i += 1
 file_name += '.h5'

 self._add_hash_lookup_entry(name, hash_, file_name)

 h5 = tables.openFile(file_name, 'w')

 # Save guidata parameters
 paramgroup = h5.createGroup('/', 'guiparams')
 guiparams = self.get_parameters()
 for p,v in guiparams.iteritems():
 t = type(v)
 if t == int or t == float:
 h5.setNodeAttr(paramgroup, p, v)
 else:
 h5.setNodeAttr(paramgroup, p, json.dumps(v))

 # Save selections the provided by plugin
 h5.setNodeAttr('/', 'selections', selection_string)

 # Save additional parameters provided by plugin
 paramgroup = h5.createGroup('/', 'userparams')
 for p,v in params.iteritems():
 t = type(v)
 if t == int or t == float:
 h5.setNodeAttr(paramgroup, p, v)
 else:
 h5.setNodeAttr(paramgroup, p, json.dumps(v))

 # Save hash and current time
 h5.setNodeAttr('/', '_hash', hash_)
 h5.setNodeAttr('/', 'time', time.time())

 return h5

[docs] def load(self, name, selections, params=None, consider_guiparams=True):
 """ Return the most recent HDF5 file for a certain parameter
 configuration. If no such file exists, return None. This
 function works with the files created by :func:`save`.

 :param str name: The name of the results to load.
 :param sequence selections: A list of :class:`DataProvider` objects
 that are relevant for the analysis results.
 :param dict params: A dictionary, indexed by strings (which should
 be valid as python identifiers), with parameters apart from GUI
 configuration used to obtain the results. All keys have to be
 integers, floats, strings or lists of these types.
 :param bool consider_guiparams: Determines if the guidata parameters
 of the class should be considered if they exist in the HDF5
 file. This should be set to False if :func:`save` is used with
 ``save_guiparams`` set to ``False``.
 :returns: An open PyTables file object ready to be used to read
 data. Afterwards, the file has to be closed by calling the
 :func:`tables.File.close` method. If no appropriate file
 exists, None is returned.
 :rtype: :class:`tables.File`
 """
 if not selections:
 selections = []

 if not os.path.exists(os.path.join(self.data_dir, name)):
 return None

 if params is None:
 params = {}

 # Use unicode parameters
 for n, v in params:
 if isinstance(v, str):
 params[n] = unicode(v)

 hash_, guidata_string, selection_string, param_string =\
 self._get_hash(selections, params, consider_guiparams)

 # Loop through files and find the most recent match
 file_names = self._get_hash_file_names(name, hash_)
 newest = 0.0
 best = None
 for fn in file_names:
 with tables.openFile(fn, 'r') as h5:
 file_hash = h5.getNodeAttr('/', '_hash')

 if hash_ != file_hash:
 continue

 # Hash is correct, check guidata parameters
 gui_params = {}
 for pname in h5.root.guiparams._v_attrs._f_list('user'):
 v = h5.getNodeAttr('/guiparams', pname)
 if isinstance(v, str):
 gui_params[pname] = json.loads(v)
 else:
 gui_params[pname] = v

 if gui_params:
 gui_param_string = repr(sorted(gui_params.items()))
 else:
 gui_param_string = ''

 if gui_param_string != guidata_string:
 continue

 # Check selections
 file_selections = h5.getNodeAttr('/', 'selections')
 if file_selections != selection_string:
 continue

 # Check custom parameters
 file_params = {}
 for pname in h5.root.userparams._v_attrs._f_list('user'):
 v = h5.getNodeAttr('/userparams', pname)
 if isinstance(v, str):
 file_params[pname] = json.loads(v)
 else:
 file_params[pname] = v

 if file_params:
 file_param_string = repr(sorted(file_params.items()))
 else:
 file_param_string = ''

 if file_param_string != param_string:
 continue

 # Make sure the most recent file is used
 analysis_time = h5.getNodeAttr('/', 'time')
 if analysis_time < newest:
 continue

 best = fn
 newest = analysis_time

 if best:
 return tables.openFile(best, 'r')
 return None

 @classmethod
 def _create_hash_lookup_file(cls, name):
 """ (Re)creates a hash lookup file for a results directory. This
 file contains all file hashes in the directory so that the
 correct file for a given parameter set can be found quickly.

 :param str name: The name of the results.
 """
 name = os.path.join(cls.data_dir, name)
 hashfile_name = os.path.join(name, 'hash.h5')
 hash_file = tables.openFile(hashfile_name, mode='w')
 table = hash_file.createTable('/', 'lookup_table', HashEntry,
 title='Hash lookup')

 # Loop through files and write hashes
 file_names = [os.path.join(name,f) for f in os.listdir(name)]
 entry = table.row
 for fn in file_names:
 if not fn.endswith('.h5') or fn == 'hash.h5':
 continue

 try:
 with tables.openFile(fn, 'r') as h5:
 file_hash = h5.getNodeAttr('/', '_hash')
 entry['hash'] = file_hash
 entry['filename'] = fn
 entry.append()
 except Exception:
 pass # Not a valid data file, no problem

 hash_file.close()

 @classmethod
 def _add_hash_lookup_entry(cls, name, hash_, file_name):
 """ Add a new entry to the hash lookup file.

 :param str name: The name of the results.
 :param str hash_: The hash of the parameters.
 :param str file_name: The file name of the results.
 """
 hashfile_name = os.path.join(cls.data_dir, name, 'hash.h5')
 if not os.path.exists(hashfile_name):
 cls._create_hash_lookup_file(name)

 hash_file = tables.openFile(hashfile_name, mode='r+')
 table = hash_file.root.lookup_table

 # Add entry
 entry = table.row
 entry['hash'] = hash_
 entry['filename'] = file_name
 entry.append()

 hash_file.close()

 @classmethod
 def _get_hash_file_names(cls, name, hash_, _recurse=False):
 """ Return a list of file names for a parameter hash. If no hash
 lookup file exists, it will be created. If it can not be
 created, a list HDF5 files in the directory will be returned.

 :param str name: The name of the results.
 :param str hash_: The hash of the parameters.
 :param bool _recurse: Internal guard against infinite recursion.
 """
 dataname = name
 name = os.path.join(cls.data_dir, name)
 hashfile_name = os.path.join(name, 'hash.h5')
 if not os.path.exists(hashfile_name):
 try:
 cls._create_hash_lookup_file(name)
 except Exception:
 return [os.path.join(name,f) for f in os.listdir(name)
 if f.endswith('.h5') and not f == 'hash.h5']

 hash_file = tables.openFile(hashfile_name, mode='r')
 table = hash_file.root.lookup_table

 files = [row['filename'] for row in
 table.where('hash == "%s"' % hash_)]

 ret = []
 for f in files:
 if os.path.exists(f):
 ret.append(f)
 elif not _recurse:
 hash_file.close()
 try:
 cls._create_hash_lookup_file(name)
 except Exception:
 return [os.path.join(name,f) for f in os.listdir(name)
 if f.endswith('.h5') and not f == 'hash.h5']
 return cls._get_hash_file_names(dataname, hash_, True)

 hash_file.close()
 return ret

 © Copyright 2012, Robert Pröpper.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.0

_static/down-pressed.png

