
spykeutils Documentation
Release 0.2.0

Robert Pröpper

December 05, 2012

CONTENTS

i

ii

spykeutils Documentation, Release 0.2.0

Based on the Neo framework, spykeutils is a Python library for analyzing and plotting neurophysiological data. It can
be used by itself or in conjunction with Spyke Viewer, a multi-platform GUI application for navigating electrophysio-
logical datasets.

Contents:

CONTENTS 1

http://neo.readthedocs.org
http://spyke-viewer.readthedocs.org

spykeutils Documentation, Release 0.2.0

2 CONTENTS

CHAPTER

ONE

REQUIREMENTS

Spykeutils is a pure Python package and therefore easy to install. It depends on the following additional packages:

• Python >= 2.7

• neo >= 0.2.2

• scipy

• guiqwt (Optional, for plotting)

• tables (Optional, for analysis results data management. Also known as PyTables.)

Please see the respective websites for instructions on how to install them if they are not present on your computer.

Note: The current version of Neo in the Python Package Index contains some bugs that prevent it from
working properly with spykeutils in some situations. Please install the latest version directly from GitHub:
https://github.com/rproepp/python-neo

You can download the repository from the GitHub page or clone it using git and then install from the resulting folder:

$ python setup.py install

3

http://python.org/
http://neo.readthedocs.org/
http://scipy.org/
http://packages.python.org/guiqwt/
http://www.pytables.org/
https://github.com/rproepp/python-neo

spykeutils Documentation, Release 0.2.0

4 Chapter 1. Requirements

CHAPTER

TWO

DOWNLOAD AND INSTALLATION

The easiest way to get spykeutils is from the Python Package Index. If you have pip installed:

$ pip install spykeutils

Alternatively, if you have setuptools:

$ easy_install spykeutils

Alternatively, you can get the latest version directly from GitHub at https://github.com/rproepp/spykeutils.

The master branch (selected by default) always contains the current stable version. If you want the latest development
version (not recommended unless you need some features that do not exist in the stable version yet), select the develop
branch. You can download the repository from the GitHub page or clone it using git and then install from the resulting
folder:

$ python setup.py install

5

http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools
https://github.com/rproepp/spykeutils

spykeutils Documentation, Release 0.2.0

6 Chapter 2. Download and Installation

CHAPTER

THREE

USAGE

For the most part, spykeutils is a collection of functions that work on Neo objects. Many functions also take quantities
as parameters. Therefore, make sure to get an overview of neo and quantities before using spykeutils. Once you
are familiar with these packages, have a look at the Examples or head to the API reference to browse the contents of
spykeutils.

7

http://neo.readthedocs.org/en/latest/index.html#neo
http://packages.python.org/quantities/user/tutorial.html#quantities

spykeutils Documentation, Release 0.2.0

8 Chapter 3. Usage

CHAPTER

FOUR

EXAMPLES

These examples demonstrate the usage of some functions in spykeutils. This includes the creation of a small Neo
object hierarchy with toy data.

4.1 Creating the sample data

The functions in spykeutils work on electrophysiological data that is represented in Neo object hierarchies. Usually,
you would load these objects from a file, but for the purpose of this demonstration we will manually create an object
hierarchy to illustrate their structure. Note that most functions in spykeutils will also work with separate Neo data
objects that are not contained in a complete hierarchy. First, we import the modules we will use:

>>> import quantities as pq
>>> import neo
>>> import scipy as sp

We start with some container objects - two segments that represent trials and two units (representing neurons) that
produced the spike trains:

>>> segments = []
>>> segments.append(neo.Segment(’Trial 1’))
>>> segments.append(neo.Segment(’Trial 2’))
>>> units = []
>>> units.append(neo.Unit(’Unit 1’))
>>> units.append(neo.Unit(’Unit 2’))

We create some analog signals from a sine wave with additive Gaussian noise, four signals in each segment:

>>> wave = sp.sin(sp.linspace(0, 20*sp.pi, 10000)) * 10
>>> for i in range(8):
... sig = wave + sp.randn(10000) * 3
... signal = neo.AnalogSignal(sig*pq.uV, sampling_rate=1*pq.kHz)
... signal.segment = segments[i%2]
... segments[i%2].analogsignals.append(signal)

And some spike trains from regular intervals or random time points:

>>> trains = []
>>> trains.append(neo.SpikeTrain(sp.linspace(0, 10, 40)*pq.s, 10*pq.s))
>>> trains.append(neo.SpikeTrain(sp.linspace(0, 10, 60)*pq.s, 10*pq.s))
>>> trains.append(neo.SpikeTrain(sp.rand(50)*10*pq.s, 10*pq.s))
>>> trains.append(neo.SpikeTrain(sp.rand(70)*10*pq.s, 10*pq.s))

9

spykeutils Documentation, Release 0.2.0

Now we create the relationships between the spike trains and container objects. Each unit has two spike trains, one in
each segment:

>>> segments[0].spiketrains = [trains[0], trains[2]]
>>> segments[1].spiketrains = [trains[1], trains[3]]
>>> units[0].spiketrains = trains[:2]
>>> units[1].spiketrains = trains[2:4]
>>> for s in segments:
... for st in s.spiketrains:
... st.segment = s
>>> for u in units:
... for st in u.spiketrains:
... st.unit = u

Now that our sample data is ready, we will use some of the function from spykeutils to analyze it.

4.2 PSTH

To create a peri stimulus time histogram from our spike trains, we call
spykeutils.rate_estimation.psth(). This function can create multiple PSTHs and takes a di-
cionary of lists of spike trains. Since our spike trains were generated by two units, we will create two histograms, one
for each unit:

>>> import spykeutils.rate_estimation
>>> st_dict = {}
>>> st_dict[units[0]] = units[0].spiketrains
>>> st_dict[units[1]] = units[1].spiketrains
>>> spykeutils.rate_estimation.psth(st_dict, 400*pq.ms)[0]
{<neo.core.unit.Unit object at 0x...>: array([6.25, 5. , 5. , 5. , 3.75, ...

spykeutils.rate_estimation.psth() returns two values: A dictionary with the resulting histograms and
a Quantity 1D with the bin edges.

If guiqwt is installed, we can also use the spykeutils.plot package to create a PSTH plot from our data (in
this case we want a bar histogram and therefore only use spike trains from one unit):

>>> import spykeutils.plot
>>> spykeutils.plot.psth({units[1]: units[1].spiketrains}, bin_size=400*pq.ms, bar_plot=True)

This will open a plot window like the following:

10 Chapter 4. Examples

http://packages.python.org/guiqwt/index.html#guiqwt

spykeutils Documentation, Release 0.2.0

4.3 Spike Density Estimation

Similar to a PSTH, a spike density estimation gives an esimate of the instantaneous firing rate. Instead of
binning, it is based on a kernel convolution which results in a smoother estimate. Creating and SDE with
spykeutils works very similar to creating a PSTH. Instead of manually choosing the size of the Gaussian kernel,
spykeutils.rate_estimation.spike_density_estimation() also supports finding the optimal ker-
nel size automatically for each unit:

>>> kernel_sizes = sp.logspace(2,3.3,100) * pq.ms
>>> spykeutils.rate_estimation.spike_density_estimation(st_dict, optimize_steps=kernel_sizes)[0]
{<neo.core.unit.Unit object at 0x...>: array([3.61293378, 3.62744654, 3.64195481, 3.65645819, ...

As with the PSTH, there is also a plot function for creating a spike density estimation. Here, we use both units because
the function produces a line plot where both units can be shown at the same time:

>>> spykeutils.plot.sde(st_dict, maximum_kernel=1500*pq.ms, optimize_steps=100)

The resulting plot will look like the following:

4.3. Spike Density Estimation 11

spykeutils Documentation, Release 0.2.0

While spike density estimations are preferable to PSTHs in many cases, the picture also shows an important weakness:
The estimation will generally be too low on margins. The areas where this happens become larger with kernel size,
which is clearly visible from the rounded shape of Unit 1 (which really has a flat rate) with its very large kernel size.

4.4 Signal Plot

As a final example, we will again use the spykeutils.plot package to create a plot of the signals we created.
This plot will also display the timings of our spike trains.

>>> spykeutils.plot.signals(segments[0].analogsignals, spike_trains=segments[0].spiketrains)

12 Chapter 4. Examples

spykeutils Documentation, Release 0.2.0

The plot shows all four signals from the first segments as well as the spike times of both spike trains in the same
segment.

4.4. Signal Plot 13

spykeutils Documentation, Release 0.2.0

14 Chapter 4. Examples

CHAPTER

FIVE

API REFERENCE

5.1 spykeutils package

class SpykeException
Exception thrown when a function in spykeutils encounters a problem that is not covered by standard exceptions.

When using Spyke Viewer, these exceptions will be caught and shown in the GUI, while general exceptions will
not be caught (and therefore be visible in the console) for easier debugging.

5.1.1 conversions Module

analog_signal_array_to_analog_signals(signal_array)
Return a list of analog signals for an analog signal array.

If signal_array is attached to a recording channel group with exactly is many channels as there are channels
in signal_array, each created signal will be assigned the corresponding channel. If the attached recording
channel group has only one recording channel, all created signals will be assigned to this channel. In all other
cases, the created signal will not have a reference to a recording channel.

Note that while the created signals may have references to a segment and channels, the relationships in the other
direction are not automatically created (the signals are not attached to the recording channel or segment). Other
properties like annotations are not copied or referenced in the created analog signals.

Parameters signal_array (neo.core.AnalogSignalArray) – An analog signal array from
which the AnalogSignal objects are constructed.

Returns A list of analog signals, one for every channel in signal_array.

Return type list

epoch_array_to_epochs(epoch_array)
Return a list of epochs for an epoch array.

Note that while the created epochs may have references to a segment, the relationships in the other direction are
not automatically created (the events are not attached to the segment). Other properties like annotations are not
copied or referenced in the created epochs.

Parameters epoch_array (neo.core.EpochArray) – A period array from which the Epoch
objects are constructed.

Returns A list of events, one for of the events in epoch_array.

Return type list

15

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignalArray

spykeutils Documentation, Release 0.2.0

event_array_to_events(event_array)
Return a list of events for an event array.

Note that while the created events may have references to a segment, the relationships in the other direction are
not automatically created (the events are not attached to the segment). Other properties like annotations are not
copied or referenced in the created events.

Parameters event_array (neo.core.EventArray) – An event array from which the Event ob-
jects are constructed.

Returns A list of events, one for of the events in event_array.

Return type list

spike_train_to_spikes(spike_train, include_waveforms=True)
Return a list of spikes for a spike train.

Note that while the created spikes have references to the same segment and unit as the spike train, the relation-
ships in the other direction are not automatically created (the spikes are not attached to the unit or segment).
Other properties like annotations are not copied or referenced in the created spikes.

Parameters

• spike_train (SpikeTrain) – A spike train from which the Spike objects are constructed.

• include_waveforms (bool) – Determines if the waveforms property is converted to the
spike waveforms. If waveforms is None, this parameter has no effect.

Returns A list of Spike objects, one for every spike in spike_train.

Return type list

spikes_to_spike_train(spikes, include_waveforms=True)
Return a spike train for a list of spikes.

All spikes must have an identical left sweep, the same unit and the same segment, otherwise a
SpykeException is raised.

Note that while the created spike train has references to the same segment and unit as the spikes, the relationships
in the other direction are not automatically created (the spike train is not attached to the unit or segment). Other
properties like annotations are not copied or referenced in the created spike train.

Parameters

• spikes – A list of spike objects from which the SpikeTrain object is constructed.

• include_waveforms (bool) – Determines if the waveforms from the Spike objects are used
to fill the waveforms property of the resulting spike train. If True, all spikes need
a waveform property with the same shape or a SpykeException is raised (or the
waveform property needs to be None for all spikes).

Returns A SpikeTrain object including all elements of spikes.

Return type neo.core.SpikeTrain

5.1.2 correlations Module

correlogram(trains, bin_size, max_lag=500 ms, border_correction=True, unit=ms, progress=None)
Return (cross-)correlograms from a dictionary of SpikeTrain lists for different units.

Parameters

• trains (dict) – Dictionary of SpikeTrain lists.

16 Chapter 5. API reference

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.2.0

• bin_size (Quantity scalar) – Bin size (time).

• max_lag (Quantity scalar) – Cut off (end time of calculated correlogram).

• border_correction (bool) – Apply correction for less data at higher timelags. Not per-
fect for bin_size != 1*‘‘unit‘‘, especially with large max_lag compared to length of spike
trains.

• unit (Quantity) – Unit of X-Axis.

• progress (spykeutils.progress_indicator.ProgressIndicator) – A Pro-
gressIndicator object for the operation.

Returns

Two values:

• An ordered dictionary indexed with the indices of trains of ordered dictionaries in-
dexed with the same indices. Entries of the inner dictionaries are the resulting (cross-
)correlograms as numpy arrays. All crosscorrelograms can be indexed in two different ways:
c[index1][index2] and c[index2][index1].

• The bins used for the correlogram calculation.

Return type dict, Quantity 1D

5.1.3 progress_indicator Module

exception CancelException
Bases: exceptions.Exception

This is raised when a user cancels a progress process. It is used by ProgressIndicator and its descendants.

class ProgressIndicator
Bases: object

Base class for classes indicating progress of a long operation.

This class does not implement any of the methods and can be used as a dummy if no progress indication is
needed.

begin(title=’‘)
Signal that the operation starts.

Parameters title (string) – The name of the whole operation.

done()
Signal that the operation is done.

set_status(new_status)
Set status description.

Parameters new_status (string) – A description of the current status.

set_ticks(ticks)
Set the required number of ticks before the operation is done.

Parameters ticks (int) – The number of steps that the operation will take.

step(num_steps=1)
Signal that one or more steps of the operation were completed.

Parameters num_steps (int) – The number of steps that have been completed.

5.1. spykeutils package 17

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/string.html#string
http://docs.python.org/library/string.html#string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

spykeutils Documentation, Release 0.2.0

ignores_cancel(function)
Decorator for functions that should ignore a raised CancelException and just return nothing in this case

5.1.4 rate_estimation Module

binned_spike_trains(trains, bin_size, start=0 ms, stop=None)
Return dictionary of binned rates for a dictionary of SpikeTrain lists.

Parameters

• trains (dict) – A sequence of SpikeTrain lists.

• bin_size (Quantity scalar) – The desired bin size (as a time quantity).

• stop (Quantity scalar) – The desired time for the end of the last bin. It will be recalculated
if there are spike trains which end earlier than this time.

Returns A dictionary (with the same indices as trains) of lists of spike train counts and the bin
borders.

Return type dict, Quantity 1D

psth(trains, bin_size, rate_correction=True, start=0 ms, stop=None)
Return dictionary of peri stimulus time histograms for a dictionary of SpikeTrain lists.

Parameters

• trains (dict) – A dictionary of lists of SpikeTrain objects.

• bin_size (Quantity scalar) – The desired bin size (as a time quantity).

• rate_correction (bool) – Determines if a rates (True) or counts (False) are returned.

• start (Quantity scalar) – The desired time for the start of the first bin. It will be recalculated
if there are spike trains which start later than this time.

• stop (Quantity scalar) – The desired time for the end of the last bin. It will be recalculated
if there are spike trains which end earlier than this time.

Returns A dictionary (with the same indices as trains) of arrays containing counts (or rates if
rate_correction is True) and the bin borders.

Return type dict, Quantity 1D

spike_density_estimation(trains, start=0 ms, stop=None, evaluation_points=None, ker-
nel=gauss_kernel, kernel_size=100 ms, optimize_steps=None,
progress=None)

Create a spike density estimation from a dictionary of lists of SpikeTrain objects. The spike density estimations
give an estimate of the instantaneous rate. Optionally finds optimal kernel size for given data.

Parameters

• trains (dict) – A dictionary of SpikeTrain lists.

• start (Quantity scalar) – The desired time for the start of the first bin. It will be recalculated
if there are spike trains which start later than this time. This parameter can be negative
(which could be useful when aligning on events).

• stop (Quantity scalar) – The desired time for the end of the last bin. It will be recalculated
if there are spike trains which end earlier than this time.

• evaluation_points (Quantity 1D) – An array of time points at which the density estimation
is evaluated to produce the data. If this is None, 1000 equally spaced points covering the
range of the input spike trains will be used.

18 Chapter 5. API reference

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.2.0

• kernel (func) – The kernel function to use, should accept two parameters: A ndarray of
distances and a kernel size. The total area under the kernel function sould be 1. Default:
Gaussian kernel

• kernel_size (Quantity scalar) – A uniform kernel size for all spike trains. Only used if
optimization of kernel sizes is not used.

• optimize_steps (Quantity 1D) – An array of time lengths that will be considered in the ker-
nel width optimization. Note that the optimization assumes a Gaussian kernel and will most
likely not give the optimal kernel size if another kernel is used. If None, kernel_size
will be used.

• progress (spykeutils.progress_indicator.ProgressIndicator) – Set this
parameter to report progress.

Returns

Three values:

• A dictionary of the spike density estimations (Quantity 1D in Hz). Indexed the same as
trains.

• A dictionary of kernel sizes (Quantity scalars). Indexed the same as trains.

• The used evaluation points.

Return type dict, dict, Quantity 1D

aligned_spike_trains(trains, events, copy=True)
Return a list of spike trains aligned to an event (the event will be time 0 on the returned trains).

Parameters

• trains (dict) – A list of SpikeTrain objects.

• events (dict) – A dictionary of Event objects, indexed by segment. These events (in case of
lists, always the first element in the list) will be used to align the spike trains and will be at
time 0 for the aligned spike trains.

• copy (bool) – Determines if aligned copies of the original spike trains will be returned. If
not, every spike train needs exactly one corresponding event, otherwise a ValueError
will be raised. Otherwise, entries with no event will be ignored.

collapsed_spike_trains(trains)
Return a superposition of a list of spike trains.

Parameters trains (iterable) – A list of SpikeTrain objects

Returns A SpikeTrain object containing all spikes of the given SpikeTrain objects.

minimum_spike_train_interval(trains)
Computes the minimum starting time and maximum end time that all given spike trains share.

Parameters trains (dict) – A dictionary of sequences of SpikeTrain objects.

Returns Maximum shared start time and minimum shared stop time.

Return type Quantity scalar, Quantity scalar

optimal_gauss_kernel_size(train, optimize_steps, progress=None)
Return the optimal kernel size for a spike density estimation of a SpikeTrain for a gaussian kernel. This
function takes a single spike train, which can be a superposition of multiple spike trains (created with
collapsed_spike_trains()) that should be included in a spike density estimation. See (Shimazaki,
Shinomoto. Journal of Computational Neuroscience. 2010).

5.1. spykeutils package 19

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.2.0

Parameters

• train (SpikeTrain) – The spike train for which the kernel size should be optimized.

• optimize_steps (Quantity 1D) – Array of kernel sizes to try (the best of these sizes will be
returned).

• progress (spykeutils.progress_indicator.ProgressIndicator) – Set this
parameter to report progress. Will be advanced by len(optimize_steps) steps.

Returns Best of the given kernel sizes

Return type Quantity scalar

5.1.5 sorting_quality_assesment Module

Functions for estimating the quality of spike sorting results. These functions estimate false positive and false negative
fractions.

calculate_overlap_fp_fn(means, spikes)
Return a dict of tuples (False positive rate, false negative rate) indexed by unit.

Details for the calculation can be found in (Hill et al. The Journal of Neuroscience. 2011). This function works
on prewhitened data, which means it assumes that all clusters have a uniform normal distribution. Data can be
prewhitened using the noise covariance matrix.

The calculation for total false positive and false negative rates does not follow (Hill et al. The Journal of
Neuroscience. 2011), where a simple addition of pairwise probabilities is proposed. Instead, the total error
probabilities are estimated using all clusters at once.

Parameters

• means (dict) – Dictionary of prewhitened cluster means (e.g. unit templates) indexed by
unit as Spike objects or numpy arrays for all units.

• spikes (dict) – Dictionary, indexed by unit, of lists of prewhitened spike waveforms as Spike
objects or numpy arrays for all units.

Returns

Two values:

• A dictionary (indexed by unit) of total (false positives, false negatives) tuples.

• A dictionary of dictionaries, both indexed by units, of pairwise (false positives, false nega-
tives) tuples.

Return type dict, dict

calculate_refperiod_fp(num_spikes, refperiod, violations, total_time)
Return the rate of false positives calculated from refractory period calculations for each unit. The equation used
is described in (Hill et al. The Journal of Neuroscience. 2011).

Parameters

• num_spikes (dict) – Dictionary of total number of spikes, indexed by unit.

• refperiod (Quantity scalar) – The refractory period (time). If the spike sorting algorithm
includes a censored period (a time after a spike during which no new spikes can be found),
subtract it from the refractory period before passing it to this function.

• violations (dict) – Dictionary of total number of violations, indexed the same as
num_spikes.

20 Chapter 5. API reference

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.2.0

• total_time (Quantity scalar) – The total time in which violations could have occured.

Returns A dictionary of false positive rates indexed by unit. Note that values above 0.5 can not be
directly interpreted as a false positive rate! These very high values can e.g. indicate that the
chosen refractory period was too large.

get_refperiod_violations(spike_trains, refperiod, progress=None)
Return the refractory period violations in the given spike trains for the specified refractory period.

Parameters

• spike_trains (dict) – Dictionary of lists of SpikeTrain objects.

• refperiod (Quantity scalar) – The refractory period (time).

• progress (spykeutils.progress_indicator.ProgressIndicator) – Set this
parameter to report progress.

Returns

Two values:

• The total number of violations.

• A dictionary (with the same indices as spike_trains) of arrays with violation times
(Quantity 1D with the same unit as refperiod) for each spike train.

Return type int, dict

5.1.6 staionarity Module

spike_amplitude_histogram(trains, num_bins, uniform_y_scale=True, unit=uV, progress=None)
Return a spike amplitude histogram.

The resulting is useful to assess the drift in spike amplitude over a longer recording. It shows histograms (one
for each trains entry, e.g. segment) of maximum and minimum spike amplitudes.

Parameters

• trains (list) – A list of lists of SpikeTrain objects. Each entry of the outer list will be one
point on the x-axis (they could correspond to segments), all amplitude occurences of spikes
contained in the inner list will be added up.

• num_bins (int) – Number of bins for the histograms.

• uniform_y_scale (bool) – If True, the histogram for each channel will use the same bins.
Otherwise, the minimum bin range is computed separately for each channel.

• unit (Quantity) – Unit of Y-Axis.

• progress (spykeutils.progress_indicator.ProgressIndicator) – Set this
parameter to report progress.

Returns

A tuple with three values:

• A three-dimensional histogram matrix, where the first dimension corresponds to bins, the
second dimension to the entries of trains (e.g. segments) and the third dimension to
channels.

• A list of the minimum amplitude value for each channel (all values will be equal if
uniform_y_scale is true).

5.1. spykeutils package 21

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.2.0

• A list of the maximum amplitude value for each channel (all values will be equal if
uniform_y_scale is true).

Return type (ndarray, list, list)

5.2 Subpackages

5.2.1 spykeutils.plot package

5.2.2 plugin Package

This package provides support for writing plugins for Spyke Viewer. It belongs to spykeutils so that plugins can be
executed in an evironment where the spykeviewer package and its dependencies are not installed (e.g. servers).

analysis_plugin Module

class AnalysisPlugin
Bases: spykeutils.plugin.gui_data.DataSet

Base class for Analysis plugins. Inherit this class to create a plugin.

The two most important methods are get_name() and start(). Both should be overridden by every plugin.
The class also has functionality for GUI configuration and saving/restoring analysis results.

The GUI configuration uses guidata. Because AnalysisPlugin inherits from DataSet, configuration options
can easily be added directly to the class definition. For example, the following code creates an analysis that has
two configuration options which are used in the start() method to print to the console:

from spykeutils.plugin.analysis_plugin import AnalysisPlugin

class ExampleAnalysis(AnalysisPlugin):
some_time = di.FloatItem(’Some time’, default=2.0, unit=’ms’)
print_more = di.BoolItem(’Print additional info’, default=True)

def start(self, current, selections):
print ’The selected time is’, some_time, ’milliseconds.’
if print_more:

print ’This is important additional information!’

The class attribute data_dir contains a base directory for saving and loading data. It is set by Spyke Viewer
to the directory specified in the settings. When using an AnalysisPlugin without Spyke Viewer, the default value
is an empty string (so the current directory will be used) and the attribute can be set to an arbitrary directory.

configure()
Configure the analysis. Override if a different or additional configuration apart from guidata is needed.

get_name()
Return the name of an analysis. Override to specify analysis name.

Returns The name of the plugin.

Return type str

get_parameters()
Return a dictionary of the configuration that can be read with deserialize_parameters(). Over-
ride both if non-guidata attributes need to be serialized or if some guidata parameters should not be serial-
ized (e.g. they only affect the visual presentation).

22 Chapter 5. API reference

http://packages.python.org/guidata/index.html#guidata

spykeutils Documentation, Release 0.2.0

Returns A dictionary of all configuration parameters.

Return type dict

load(name, selections, params=None, consider_guiparams=True)
Return the most recent HDF5 file for a certain parameter configuration. If no such file exists, return None.
This function works with the files created by save().

Parameters

• name (str) – The name of the results to load.

• selections (sequence) – A list of DataProvider objects that are relevant for the analysis
results.

• params (dict) – A dictionary, indexed by strings (which should be valid as python identi-
fiers), with parameters apart from GUI configuration used to obtain the results. All keys
have to be integers, floats, strings or lists of these types.

• consider_guiparams (bool) – Determines if the guidata parameters of the class should be
considered if they exist in the HDF5 file. This should be set to False if save() is used
with save_guiparams set to False.

Returns An open PyTables file object ready to be used to read data. Afterwards, the file has to
be closed by calling the tables.File.close() method. If no appropriate file exists,
None is returned.

Return type tables.File

save(name, selections, params=None, save_guiparams=True)
Return a HDF5 file object with parameters already stored. Save analysis results to this file.

Parameters

• name (str) – The name of the results to save. A folder with this name will be used (and
created if necessary) to store the analysis result files.

• selections (sequence) – A list of DataProvider objects that are relevant for the analysis
results.

• params (dict) – A dictionary, indexed by strings (which should be valid as python identi-
fiers), with parameters apart from GUI configuration used to obtain the results. All keys
have to be integers, floats, strings or lists of these types.

• save_guiparams (bool) – Determines if the guidata parameters of the class should be
saved in the file.

Returns An open PyTables file object ready to be used to store data. Afterwards, the file has to
be closed by calling the tables.File.close() method.

Return type tables.File

set_parameters(parameters)
Load configuration from a dictionary that has been created by serialize_parameters(). Override
both if non-guidata attributes need to be serialized or if some guidata parameterss hould not be serialized
(e.g. they only affect the visual presentation).

Parameters parameters (dict) – A dictionary of all configuration parameters.

start(current, selections)
Entry point for processing. Override with analysis code.

Parameters

5.2. Subpackages 23

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.2.0

• current (spykeviewer.plugin_framework.data_provider.DataProvider)
– This data provider is used if the analysis should be performed on the data currently
selected in the GUI.

• selections (list) – This parameter contains all saved selections. It is used if an analysis
needs multiple data sets.

data_provider Module

class DataProvider(name, progress)
Bases: object

Defines all methods that should be implemented by a selection/data provider class.

A DataProvider encapsulates access to a selection of data. It can be used by plugins to acesss
data currently selected in the GUI or in saved selections. It also contains an attribute progress, a
spykeutils.progress_indicator.ProgressIndicator that can be used to report the progress
of an operation (and is used by methods of this class if they can lead to processing times of half a second or
more).

This class serves as an abstract base class and should not be instantiated.

analog_signal_arrays()
Return a list of AnalogSignalArray objects.

analog_signal_arrays_by_channelgroup()
Return a dictionary (indexed by RecordingChannelGroup) of lists of AnalogSignalArray objects.

If analog signals arrays not attached to a RecordingChannel are selected, their dictionary key will be
DataProvider.no_channelgroup.

analog_signal_arrays_by_channelgroup_and_segment()
Return a dictionary (indexed by RecordingChannelGroup) of dictionaries (indexed by Segment) of
AnalogSignalArray objects.

If there are multiple analog signals in one RecordingChannel for the same Segment, only the first
will be contained in the returned dictionary. If analog signal arrays not attached to a Segment or
RecordingChannelGroup are selected, their dictionary key will be DataProvider.no_segment or
DataProvider.no_channelgroup, respectively.

analog_signal_arrays_by_segment()
Return a dictionary (indexed by Segment) of lists of AnalogSignalArray objects.

If analog signals arrays not attached to a Segment are selected, their dictionary key will be
DataProvider.no_segment.

analog_signal_arrays_by_segment_and_channelgroup()
Return a dictionary (indexed by RecordingChannelGroup) of dictionaries (indexed by Segment) of
AnalogSignalArray objects.

If there are multiple analog signals in one RecordingChannel for the same Segment, only the first
will be contained in the returned dictionary. If analog signal arrays not attached to a Segment or
RecordingChannelGroup are selected, their dictionary key will be DataProvider.no_segment or
DataProvider.no_channelgroup, respectively.

analog_signals()
Return a list of AnalogSignal objects.

analog_signals_by_channel()
Return a dictionary (indexed by RecordingChannel) of lists of AnalogSignal objects.

24 Chapter 5. API reference

http://docs.python.org/library/functions.html#list

spykeutils Documentation, Release 0.2.0

If analog signals not attached to a RecordingChannel are selected, their dictionary key will be
DataProvider.no_channel.

analog_signals_by_channel_and_segment()
Return a dictionary (indexed by RecordingChannel) of dictionaries (indexed by Segment) of AnalogSignal
lists.

If analog signals not attached to a Segment or RecordingChannel are selected, their dictionary key will be
DataProvider.no_segment or DataProvider.no_channel, respectively.

analog_signals_by_segment()
Return a dictionary (indexed by Segment) of lists of AnalogSignal objects.

If analog signals not attached to a Segment are selected, their dictionary key will be
DataProvider.no_segment.

analog_signals_by_segment_and_channel()
Return a dictionary (indexed by Segment) of dictionaries (indexed by RecordingChannel) of AnalogSignal
lists.

If analog signals not attached to a Segment or RecordingChannel are selected, their dictionary key will be
DataProvider.no_segment or DataProvider.no_channel, respectively.

blocks()
Return a list of selected Block objects.

The returned objects will contain all regular references, not just to selected objects.

data_dict()
Return a dictionary with all information to serialize the object.

epoch_arrays()
Return a dictionary (indexed by Segment) of lists of EpochArray objects.

epochs(include_array_epochs=True)
Return a dictionary (indexed by Segment) of lists of Epoch objects.

Parameters include_array_epochs (bool) – Determines if EpochArray objects should be con-
verted to Epoch objects and included in the returned list.

event_arrays()
Return a dictionary (indexed by Segment) of lists of EventArray objects.

events(include_array_events=True)
Return a dictionary (indexed by Segment) of lists of Event objects.

Parameters include_array_events (bool) – Determines if EventArray objects should be con-
verted to Event objects and included in the returned list.

classmethod from_data(data, progress=None)
Create a new DataProvider object from a dictionary. This method is mostly for internal use.

The respective type of DataProvider (e.g. spykeviewer.plugin_framework.data_provider_neo.DataProviderNeo
has to be imported in the environment where this function is called.

Parameters

• data (dict) – A dictionary containing data from a DataProvider object, as returned by
data_dict().

• progress (ProgressIndicator) – The object where loading progress will be indicated.

labeled_epochs(label, include_array_epochs=True)
Return a dictionary (indexed by Segment) of lists of Epoch objects with the given label.

5.2. Subpackages 25

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.2.0

Parameters

• label (str) – The name of the Epoch objects to be returnded

• include_array_epochs (bool) – Determines if EpochArray objects should be converted to
Epoch objects and included in the returned list.

labeled_events(label, include_array_events=True)
Return a dictionary (indexed by Segment) of lists of Event objects with the given label.

Parameters

• label (str) – The name of the Event objects to be returnded

• include_array_events (bool) – Determines if EventArray objects should be converted to
Event objects and included in the returned list.

num_analog_signal_arrays()
Return the number of AnalogSignalArray objects.

num_analog_signals()
Return the number of AnalogSignal objects.

recording_channel_groups()
Return a list of selected RecordingChannelGroup objects.

The returned objects will contain all regular references, not just to selected objects.

recording_channels()
Return a list of selected RecordingChannel objects.

The returned objects will contain all regular references, not just to selected objects.

segments()
Return a list of selected Segment objects.

The returned objects will contain all regular references, not just to selected objects.

selection_blocks()
Return a list of selected blocks.

The returned blocks will contain references to all other selected elements further down in the object hier-
archy, but no references to elements which are not selected. The returned hierarchy is a copy, so changes
made to it will not persist. The main purpose of this function is to provide an object hierarchy that can be
saved to a neo file. It is not recommended to use it for data processing, the respective functions that return
objects lower in the hierarchy are better suited for that purpose.

spike_trains()
Return a list of SpikeTrain objects.

spike_trains_by_segment()
Return a dictionary (indexed by Segment) of lists of SpikeTrain objects.

If spike trains not attached to a Segment are selected, their dictionary key will be
DataProvider.no_segment.

spike_trains_by_segment_and_unit()
Return a dictionary (indexed by Unit) of dictionaries (indexed by Segment) of SpikeTrain objects.

If there are multiple spike trains in one Segment for the same Unit, only the first will be contained in the
returned dictionary. If spike trains not attached to a Unit or Segment are selected, their dictionary key will
be DataProvider.no_unit or DataProvider.no_segment, respectively.

26 Chapter 5. API reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.2.0

spike_trains_by_unit()
Return a dictionary (indexed by Unit) of lists of SpikeTrain objects.

If spike trains not attached to a Unit are selected, their dicionary key will be DataProvider.no_unit.

spike_trains_by_unit_and_segment()
Return a dictionary (indexed by Unit) of dictionaries (indexed by Segment) of SpikeTrain objects.

If there are multiple spike trains in one Segment for the same Unit, only the first will be contained in the
returned dictionary. If spike trains not attached to a Unit or Segment are selected, their dictionary key will
be DataProvider.no_unit or DataProvider.no_segment, respectively.

spikes()
Return a list of Spike objects.

spikes_by_segment()
Return a dictionary (indexed by Segment) of lists of Spike objects.

If spikes not attached to a Segment are selected, their dictionary key will be
DataProvider.no_segment.

spikes_by_segment_and_unit()
Return a dictionary (indexed by Segment) of dictionaries (indexed by Unit) of lists of Spike lists.

If spikes not attached to a Unit or Segment are selected, their dictionary key will be
DataProvider.no_unit or DataProvider.no_segment, respectively.

spikes_by_unit()
Return a dictionary (indexed by Unit) of lists of Spike objects.

If spikes not attached to a Unit are selected, their dicionary key will be DataProvider.no_unit.

spikes_by_unit_and_segment()
Return a dictionary (indexed by Unit) of dictionaries (indexed by Segment) of Spike lists.

If there are multiple spikes in one Segment for the same Unit, only the first will be contained in the
returned dictionary. If spikes not attached to a Unit or Segment are selected, their dictionary key will be
DataProvider.no_unit or DataProvider.no_segment, respectively.

units()
Return a list of selected Unit objects.

The returned objects will contain all regular references, not just to selected objects.

gui_data Module

This module gives access to all members of guidata.dataset.dataitems and
guidata.dataset.datatypes. If guidata cannot be imported, the module offers suitable dummy
objects instead (e.g. for use on a server).

5.2. Subpackages 27

http://packages.python.org/guidata/reference.html#guidata.dataset.dataitems
http://packages.python.org/guidata/reference.html#guidata.dataset.datatypes
http://packages.python.org/guidata/index.html#guidata

spykeutils Documentation, Release 0.2.0

28 Chapter 5. API reference

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

29

spykeutils Documentation, Release 0.2.0

30 Chapter 6. Indices and tables

PYTHON MODULE INDEX

s
spykeutils, ??
spykeutils.conversions, ??
spykeutils.correlations, ??
spykeutils.plugin, ??
spykeutils.plugin.analysis_plugin, ??
spykeutils.plugin.data_provider, ??
spykeutils.plugin.gui_data, ??
spykeutils.progress_indicator, ??
spykeutils.rate_estimation, ??
spykeutils.sorting_quality_assesment,

??
spykeutils.stationarity, ??

31

