
spykeutils Documentation
Release 0.4.0

Robert Pröpper

August 16, 2013

CONTENTS

i

ii

spykeutils Documentation, Release 0.4.0

Based on the Neo framework, spykeutils is a Python library for analyzing and plotting neurophysiological data. It can
be used by itself or in conjunction with Spyke Viewer, a multi-platform GUI application for navigating electrophysio-
logical datasets.

A mailinglist for discussion and support is available at https://groups.google.com/d/forum/spyke-viewer

Contents:

CONTENTS 1

http://neo.readthedocs.org
http://spyke-viewer.readthedocs.org
https://groups.google.com/d/forum/spyke-viewer

spykeutils Documentation, Release 0.4.0

2 CONTENTS

CHAPTER

ONE

REQUIREMENTS

Spykeutils is a pure Python package and therefore easy to install. It depends on the following additional packages:

• Python >= 2.7

• neo >= 0.2.1

• scipy

• guiqwt >= 2.1.4 (Optional, for plotting)

• tables (Optional, for analysis results data management. Also known as PyTables.)

• scikit-learn (Optional, for spike sorting quality analysis using Gaussian cluster overlap.)

Please see the respective websites for instructions on how to install them if they are not present on your computer.
If you use Linux, you might not have access rights to your Python package installation directory, depending on your
configuration. In this case, you will have to execute all shell commands in this section with administrator privileges,
e.g. by using sudo.

3

http://python.org
http://neo.readthedocs.org
http://scipy.org
http://packages.python.org/guiqwt
http://www.pytables.org
http://scikit-learn.org

spykeutils Documentation, Release 0.4.0

4 Chapter 1. Requirements

CHAPTER

TWO

DOWNLOAD AND INSTALLATION

The easiest way to get spykeutils is from the Python Package Index. If you have pip installed:

$ pip install spykeutils

Alternatively, if you have setuptools:

$ easy_install spykeutils

Users of NeuroDebian or its repositories (available for Debian and Ubuntu) can also install spykeutils using the pack-
age manager instead of pip:

$ sudo apt-get install python-spykeutils

Alternatively, you can get the latest version directly from GitHub at https://github.com/rproepp/spykeutils.

The master branch always contains the current stable version. If you want the latest development version, use the
develop branch (selected by default). You can download the repository from the GitHub page or clone it using git and
then install from the resulting folder:

$ python setup.py install

5

http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools
http://neuro.debian.net
http://pypi.python.org/pypi/pip
https://github.com/rproepp/spykeutils

spykeutils Documentation, Release 0.4.0

6 Chapter 2. Download and Installation

CHAPTER

THREE

USAGE

For the most part, spykeutils is a collection of functions that work on Neo objects. Many functions also take quantities
as parameters. Therefore, make sure to get an overview of neo and quantities before using spykeutils. Once you
are familiar with these packages, have a look at the Examples or head to the API reference to browse the contents of
spykeutils.

7

http://neo.readthedocs.org/en/latest/index.html#neo
http://packages.python.org/quantities/user/tutorial.html#quantities

spykeutils Documentation, Release 0.4.0

8 Chapter 3. Usage

CHAPTER

FOUR

EXAMPLES

These examples demonstrate the usage of some functions in spykeutils. This includes the creation of a small Neo
object hierarchy with toy data.

4.1 Creating the sample data

The functions in spykeutils work on electrophysiological data that is represented in Neo object hierarchies. Usually,
you would load these objects from a file, but for the purpose of this demonstration we will manually create an object
hierarchy to illustrate their structure. Note that most functions in spykeutils will also work with separate Neo data
objects that are not contained in a complete hierarchy. First, we import the modules we will use:

>>> import quantities as pq
>>> import neo
>>> import scipy as sp
>>> import spykeutils.spike_train_generation as stg

We start with some container objects: two segments that represent trials and three units (representing neurons) that
produced the spike trains:

>>> segments = [neo.Segment(’Trial 1’), neo.Segment(’Trial 2’)]
>>> units = []
>>> units.append(neo.Unit(’Regular intervals’))
>>> units.append(neo.Unit(’Homogeneous Poisson’))
>>> units.append(neo.Unit(’Modulated Poisson’))

We create some spike trains from regular intervals, a homogeneous Poisson process and a modulated Poisson process:

>>> trains = []
>>> trains.append(neo.SpikeTrain(sp.linspace(0, 10, 40) * pq.s, 10 * pq.s))
>>> trains.append(neo.SpikeTrain(sp.linspace(0, 10, 60) * pq.s, 10 * pq.s))
>>> trains.append(stg.gen_homogeneous_poisson(5 * pq.Hz, t_stop=10 * pq.s))
>>> trains.append(stg.gen_homogeneous_poisson(7 * pq.Hz, t_stop=10 * pq.s))
>>> modulation = lambda t: sp.sin(3 * sp.pi * t / 10.0 / pq.s) / 2.0 + 0.5
>>> trains.append(stg.gen_inhomogeneous_poisson(modulation, 10 * pq.Hz, t_stop=10*pq.s))
>>> trains.append(stg.gen_inhomogeneous_poisson(modulation, 10 * pq.Hz, t_stop=10*pq.s))

Next, we create analog signals using the spike trains. First, we convolve all spike times with a mock spike waveform.

>>> spike = sp.sin(-sp.linspace(0, 2 * sp.pi, 16))
>>> binned_trains = (sp.histogram(trains[0], bins=160000, range=(0,10))[0] +
... sp.histogram(trains[2], bins=160000, range=(0,10))[0] +
... sp.histogram(trains[4], bins=160000, range=(0,10))[0])
>>> train_waves = [sp.convolve(binned_trains, spike)]

9

spykeutils Documentation, Release 0.4.0

>>> binned_trains = (sp.histogram(trains[1], bins=160000, range=(0,10))[0] +
... sp.histogram(trains[3], bins=160000, range=(0,10))[0] +
... sp.histogram(trains[5], bins=160000, range=(0,10))[0])
>>> train_waves.append(sp.convolve(binned_trains, spike))

Now we add Gaussian noise and create four signals in each segment:

>>> for i in range(8):
... sig = train_waves[i%2] + 0.2 * sp.randn(train_waves[i%2].shape[0])
... signal = neo.AnalogSignal(sig * pq.uV, sampling_rate=16 * pq.kHz)
... signal.segment = segments[i%2]
... segments[i%2].analogsignals.append(signal)

Now we create the relationships between the spike trains and container objects. Each unit has two spike trains, one in
each segment:

>>> segments[0].spiketrains = [trains[0], trains[2], trains[4]]
>>> segments[1].spiketrains = [trains[1], trains[3], trains[5]]
>>> units[0].spiketrains = trains[:2]
>>> units[1].spiketrains = trains[2:4]
>>> units[2].spiketrains = trains[4:6]
>>> for s in segments:
... for st in s.spiketrains:
... st.segment = s
>>> for u in units:
... for st in u.spiketrains:
... st.unit = u

Now that our sample data is ready, we will use some of the function from spykeutils to analyze it.

4.2 PSTH and ISI

To create a peri stimulus time histogram from our spike trains, we call
spykeutils.rate_estimation.psth(). This function can create multiple PSTHs and takes a di-
cionary of lists of spike trains. Since our spike trains were generated by three units, we will create three histograms,
one for each unit:

>>> import spykeutils.rate_estimation
>>> st_dict = {}
>>> st_dict[units[0]] = units[0].spiketrains
>>> st_dict[units[1]] = units[1].spiketrains
>>> st_dict[units[2]] = units[2].spiketrains
>>> spykeutils.rate_estimation.psth(st_dict, 400 * pq.ms)[0]
{<neo.core.unit.Unit object at 0x...>: array([6.25, 5. , 5. , 5. , 3.75, ...

spykeutils.rate_estimation.psth() returns two values: A dictionary with the resulting histograms and
a Quantity 1D with the bin edges.

If guiqwt is installed, we can also use the spykeutils.plot package to create a PSTH plot from our data (in
this case we want a bar histogram and therefore only use spike trains from one unit):

>>> import spykeutils.plot
>>> spykeutils.plot.psth({units[2]: units[2].spiketrains}, bin_size=400 * pq.ms, bar_plot=True)

Similiarily, we can create an interspike interval histogram plot with:

10 Chapter 4. Examples

http://packages.python.org/guiqwt/index.html#guiqwt

spykeutils Documentation, Release 0.4.0

>>> spykeutils.plot.isi({units[2]: units[2].spiketrains}, bin_size=30 * pq.ms, cut_off=300 * pq.ms, bar_plot=True)

This will open a plot window like the following:

4.3 Spike Density Estimation

Similar to a PSTH, a spike density estimation gives an esimate of the instantaneous firing rate. Instead of
binning, it is based on a kernel convolution which results in a smoother estimate. Creating and SDE with
spykeutils works very similar to creating a PSTH. Instead of manually choosing the size of the Gaussian kernel,
spykeutils.rate_estimation.spike_density_estimation() also supports finding the optimal ker-
nel size automatically for each unit:

>>> kernel_sizes = sp.logspace(2, 3.3, 100) * pq.ms
>>> spykeutils.rate_estimation.spike_density_estimation(st_dict, optimize_steps=kernel_sizes)[0]
{<neo.core.unit.Unit object at 0x...>: array([...

As with the PSTH, there is also a plot function for creating a spike density estimation. Here, we use both units because
the function produces a line plot where both units can be shown at the same time:

>>> spykeutils.plot.sde(st_dict, maximum_kernel=3000*pq.ms, optimize_steps=100)

The resulting plot will look like the following:

4.3. Spike Density Estimation 11

spykeutils Documentation, Release 0.4.0

While spike density estimations are preferable to PSTHs in many cases, the picture also shows an important weakness:
The estimation will generally be too low on margins. The areas where this happens become larger with kernel size,
which is clearly visible from the rounded shape of the purple and pink curves (which should be flat because of the
constant rate of the spike trains) with their very large kernel size.

4.4 Signal Plot

As a final example, we will again use the spykeutils.plot package to create a plot of the signals we created.
This plot will also display the spike timings one of our spike trains.

>>> spykeutils.plot.signals(segments[0].analogsignals, spike_trains=[segments[0].spiketrains[2]], show_waveforms=False)

12 Chapter 4. Examples

spykeutils Documentation, Release 0.4.0

The plot shows all four signals from the first segments as well as the spike times of the inhomogeneous poisson process
in the same segment.

4.4. Signal Plot 13

spykeutils Documentation, Release 0.4.0

14 Chapter 4. Examples

CHAPTER

FIVE

API REFERENCE

5.1 spykeutils package

class SpykeException
Exception thrown when a function in spykeutils encounters a problem that is not covered by standard exceptions.

When using Spyke Viewer, these exceptions will be caught and shown in the GUI, while general exceptions will
not be caught (and therefore be visible in the console) for easier debugging.

5.1.1 conversions Module

analog_signal_array_to_analog_signals(signal_array)
Return a list of analog signals for an analog signal array.

If signal_array is attached to a recording channel group with exactly is many channels as there are channels
in signal_array, each created signal will be assigned the corresponding channel. If the attached recording
channel group has only one recording channel, all created signals will be assigned to this channel. In all other
cases, the created signal will not have a reference to a recording channel.

Note that while the created signals may have references to a segment and channels, the relationships in the other
direction are not automatically created (the signals are not attached to the recording channel or segment). Other
properties like annotations are not copied or referenced in the created analog signals.

Parameters signal_array (neo.core.AnalogSignalArray) – An analog signal array from
which the neo.core.AnalogSignal objects are constructed.

Returns A list of analog signals, one for every channel in signal_array.

Return type list

epoch_array_to_epochs(epoch_array)
Return a list of epochs for an epoch array.

Note that while the created epochs may have references to a segment, the relationships in the other direction are
not automatically created (the events are not attached to the segment). Other properties like annotations are not
copied or referenced in the created epochs.

Parameters epoch_array (neo.core.EpochArray) – A period array from which the Epoch
objects are constructed.

Returns A list of events, one for of the events in epoch_array.

Return type list

15

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignalArray
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignal

spykeutils Documentation, Release 0.4.0

event_array_to_events(event_array)
Return a list of events for an event array.

Note that while the created events may have references to a segment, the relationships in the other direction are
not automatically created (the events are not attached to the segment). Other properties like annotations are not
copied or referenced in the created events.

Parameters event_array (neo.core.EventArray) – An event array from which the Event ob-
jects are constructed.

Returns A list of events, one for of the events in event_array.

Return type list

spike_train_to_spikes(spike_train, include_waveforms=True)
Return a list of spikes for a spike train.

Note that while the created spikes have references to the same segment and unit as the spike train, the relation-
ships in the other direction are not automatically created (the spikes are not attached to the unit or segment).
Other properties like annotations are not copied or referenced in the created spikes.

Parameters

• spike_train (neo.core.SpikeTrain) – A spike train from which the
neo.core.Spike objects are constructed.

• include_waveforms (bool) – Determines if the waveforms property is converted to the
spike waveforms. If waveforms is None, this parameter has no effect.

Returns A list of neo.core.Spike objects, one for every spike in spike_train.

Return type list

spikes_to_spike_train(spikes, include_waveforms=True)
Return a spike train for a list of spikes.

All spikes must have an identical left sweep, the same unit and the same segment, otherwise a
SpykeException is raised.

Note that while the created spike train has references to the same segment and unit as the spikes, the relationships
in the other direction are not automatically created (the spike train is not attached to the unit or segment). Other
properties like annotations are not copied or referenced in the created spike train.

Parameters

• spikes (sequence) – A sequence of neo.core.Spike objects from which the spike train
is constructed.

• include_waveforms (bool) – Determines if the waveforms from the spike objects are used
to fill the waveforms property of the resulting spike train. If True, all spikes need
a waveform property with the same shape or a SpykeException is raised (or the
waveform property needs to be None for all spikes).

Returns All elements of spikes as spike train.

Return type neo.core.SpikeTrain

5.1.2 correlations Module

correlogram(trains, bin_size, max_lag=array(500.0) * ms, border_correction=True, per_second=True,
unit=UnitTime(‘millisecond’, 0.001 * s, ‘ms’), progress=None)

Return (cross-)correlograms from a dictionary of spike train lists for different units.

16 Chapter 5. API reference

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://docs.python.org/library/functions.html#bool
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://docs.python.org/library/functions.html#bool
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain

spykeutils Documentation, Release 0.4.0

Parameters

• trains (dict) – Dictionary of neo.core.SpikeTrain lists.

• bin_size (Quantity scalar) – Bin size (time).

• max_lag (Quantity scalar) – Cut off (end time of calculated correlogram).

• border_correction (bool) – Apply correction for less data at higher timelags. Not per-
fect for bin_size != 1*‘‘unit‘‘, especially with large max_lag compared to length of spike
trains.

• per_second (bool) – If True, counts returned are per second. Otherwise, counts per spike
train are returned.

• unit (Quantity) – Unit of X-Axis.

• progress (progress_indicator.ProgressIndicator) – A ProgressIndicator ob-
ject for the operation.

Returns

Two values:

• An ordered dictionary indexed with the indices of trains of ordered dictionaries in-
dexed with the same indices. Entries of the inner dictionaries are the resulting (cross-
)correlograms as numpy arrays. All crosscorrelograms can be indexed in two different ways:
c[index1][index2] and c[index2][index1].

• The bins used for the correlogram calculation.

Return type dict, Quantity 1D

5.1.3 progress_indicator Module

exception CancelException
Bases: exceptions.Exception

This is raised when a user cancels a progress process. It is used by ProgressIndicator and its descendants.

class ProgressIndicator
Bases: object

Base class for classes indicating progress of a long operation.

This class does not implement any of the methods and can be used as a dummy if no progress indication is
needed.

begin(title=’‘)
Signal that the operation starts.

Parameters title (string) – The name of the whole operation.

done()
Signal that the operation is done.

set_status(new_status)
Set status description.

Parameters new_status (string) – A description of the current status.

set_ticks(ticks)
Set the required number of ticks before the operation is done.

Parameters ticks (int) – The number of steps that the operation will take.

5.1. spykeutils package 17

http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/string.html#string
http://docs.python.org/library/string.html#string
http://docs.python.org/library/functions.html#int

spykeutils Documentation, Release 0.4.0

step(num_steps=1)
Signal that one or more steps of the operation were completed.

Parameters num_steps (int) – The number of steps that have been completed.

ignores_cancel(function)
Decorator for functions that should ignore a raised CancelException and just return nothing in this case

5.1.4 rate_estimation Module

aligned_spike_trains(trains, events, copy=True)
Return a list of spike trains aligned to an event (the event will be time 0 on the returned trains).

Parameters

• trains (list) – A list of neo.core.SpikeTrain objects.

• events (dict) – A dictionary of Event objects, indexed by segment. These events will be
used to align the spike trains and will be at time 0 for the aligned spike trains.

• copy (bool) – Determines if aligned copies of the original spike trains will be returned. If
not, every spike train needs exactly one corresponding event, otherwise a ValueError
will be raised. Otherwise, entries with no event will be ignored.

collapsed_spike_trains(trains)
Return a superposition of a list of spike trains.

Parameters trains (iterable) – A list of neo.core.SpikeTrain objects

Returns A spike train object containing all spikes of the given spike trains.

Return type neo.core.SpikeTrain

optimal_gauss_kernel_size(train, optimize_steps, progress=None)
Return the optimal kernel size for a spike density estimation of a spike train for a gaussian kernel. This
function takes a single spike train, which can be a superposition of multiple spike trains (created with
collapsed_spike_trains()) that should be included in a spike density estimation.

Implements the algorithm from (Shimazaki, Shinomoto. Journal of Computational Neuroscience. 2010).

Parameters

• train (neo.core.SpikeTrain) – The spike train for which the kernel size should be
optimized.

• optimize_steps (Quantity 1D) – Array of kernel sizes to try (the best of these sizes will be
returned).

• progress (progress_indicator.ProgressIndicator) – Set this parameter to re-
port progress. Will be advanced by len(optimize_steps) steps.

Returns Best of the given kernel sizes

Return type Quantity scalar

psth(trains, bin_size, rate_correction=True, start=array(0.0) * ms, stop=array(inf) * s)
Return dictionary of peri stimulus time histograms for a dictionary of spike train lists.

Parameters

• trains (dict) – A dictionary of lists of neo.core.SpikeTrain objects.

• bin_size (Quantity scalar) – The desired bin size (as a time quantity).

• rate_correction (bool) – Determines if a rates (True) or counts (False) are returned.

18 Chapter 5. API reference

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#list
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#bool
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.4.0

• start (Quantity scalar) – The desired time for the start of the first bin. It will be recalculated
if there are spike trains which start later than this time.

• stop (Quantity scalar) – The desired time for the end of the last bin. It will be recalculated
if there are spike trains which end earlier than this time.

Returns A dictionary (with the same indices as trains) of arrays containing counts (or rates if
rate_correction is True) and the bin borders.

Return type dict, Quantity 1D

spike_density_estimation(trains, start=array(0.0) * ms, stop=None, kernel=None, ker-
nel_size=array(100.0) * ms, optimize_steps=None, progress=None)

Create a spike density estimation from a dictionary of lists of spike trains.

The spike density estimations give an estimate of the instantaneous rate. The density estimation is evaluated at
1024 equally spaced points covering the range of the input spike trains. Optionally finds optimal kernel size for
given data using the algorithm from (Shimazaki, Shinomoto. Journal of Computational Neuroscience. 2010).

Parameters

• trains (dict) – A dictionary of neo.core.SpikeTrain lists.

• start (Quantity scalar) – The desired time for the start of the estimation. It will be recalcu-
lated if there are spike trains which start later than this time. This parameter can be negative
(which could be useful when aligning on events).

• stop (Quantity scalar) – The desired time for the end of the estimation. It will be recalcu-
lated if there are spike trains which end earlier than this time.

• kernel (func or signal_processing.Kernel) – The kernel function or instance to
use, should accept two parameters: A ndarray of distances and a kernel size. The total area
under the kernel function should be 1. Automatic optimization assumes a Gaussian kernel
and will likely not produce optimal results for different kernels. Default: Gaussian kernel

• kernel_size (Quantity scalar) – A uniform kernel size for all spike trains. Only used if
optimization of kernel sizes is not used.

• optimize_steps (Quantity 1D) – An array of time lengths that will be considered in the ker-
nel width optimization. Note that the optimization assumes a Gaussian kernel and will most
likely not give the optimal kernel size if another kernel is used. If None, kernel_size
will be used.

• progress (progress_indicator.ProgressIndicator) – Set this parameter to re-
port progress.

Returns

Three values:

• A dictionary of the spike density estimations (Quantity 1D in Hz). Indexed the same as
trains.

• A dictionary of kernel sizes (Quantity scalars). Indexed the same as trains.

• The used evaluation points.

Return type dict, dict, Quantity 1D

5.1.5 signal_processing Module

class CausalDecayingExpKernel(kernel_size=array(1.0) * s, normalize=True)
Bases: spykeutils.signal_processing.Kernel

5.1. spykeutils package 19

http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain

spykeutils Documentation, Release 0.4.0

Unnormalized: K(t) = exp(− t
τ)Θ(t) with Θ(t) =

{
0, x < 0
1, x ≥ 0

and kernel size τ .

Normalized to unit area: K ′(t) = 1
τK(t)

boundary_enclosing_at_least(fraction)

static evaluate(t, kernel_size)

normalization_factor(kernel_size)

class GaussianKernel(kernel_size=array(1.0) * s, normalize=True)
Bases: spykeutils.signal_processing.SymmetricKernel

Unnormalized: K(t) = exp(− t2

2σ2) with kernel size σ (corresponds to the standard deviation of a Gaussian
distribution).

Normalized to unit area: K ′(t) = 1
σ
√
2π
K(t)

boundary_enclosing_at_least(fraction)

static evaluate(t, kernel_size)

normalization_factor(kernel_size)

class Kernel(kernel_size, normalize)
Bases: object

Base class for kernels.

boundary_enclosing_at_least(fraction)
Calculates the boundary b so that the integral from−b to b encloses at least a certain fraction of the integral
over the complete kernel.

Parameters fraction (float) – Fraction of the whole area which at least has to be enclosed.

Returns boundary

Return type Quantity scalar

is_symmetric()
Should return True if the kernel is symmetric.

normalization_factor(kernel_size)
Returns the factor needed to normalize the kernel to unit area.

Parameters kernel_size (Quantity scalar) – Controls the width of the kernel.

Returns Factor to normalize the kernel to unit width.

Return type Quantity scalar

summed_dist_matrix(vectors, presorted=False)
Calculates the sum of all element pair distances for each pair of vectors.

If (a1, . . . , an) and (b1, . . . , bm) are the u-th and v-th vector from vectors and K the kernel, the resulting
entry in the 2D array will be Duv =

∑n
i=1

∑m
j=1K(ai − bj).

Parameters

• vectors (sequence) – A sequence of Quantity 1D to calculate the summed distances for
each pair. The required units depend on the kernel. Usually it will be the inverse unit of
the kernel size.

• presorted (bool) – Some optimized specializations of this function may need sorted vec-
tors. Set presorted to True if you know that the passed vectors are already sorted to skip
the sorting and thus increase performance.

20 Chapter 5. API reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.4.0

Return type Quantity 2D

class KernelFromFunction(kernel_func, kernel_size)
Bases: spykeutils.signal_processing.Kernel

Creates a kernel form a function. Please note, that not all methods for such a kernel are implemented.

is_symmetric()

class LaplacianKernel(kernel_size=array(1.0) * s, normalize=True)
Bases: spykeutils.signal_processing.SymmetricKernel

Unnormalized: K(t) = exp(−| tτ |) with kernel size τ .

Normalized to unit area: K ′(t) = 1
2τK(t)

boundary_enclosing_at_least(fraction)

static evaluate(t, kernel_size)

normalization_factor(kernel_size)

summed_dist_matrix(vectors, presorted=False)

class RectangularKernel(half_width=array(1.0) * s, normalize=True)
Bases: spykeutils.signal_processing.SymmetricKernel

Unnormalized: K(t) =

{
1, |t| < τ
0, |t| ≥ τ with kernel size τ corresponding to the half width.

Normalized to unit area: K ′(t) = 1
2τK(t)

boundary_enclosing_at_least(fraction)

static evaluate(t, half_width)

normalization_factor(half_width)

class SymmetricKernel(kernel_size, normalize)
Bases: spykeutils.signal_processing.Kernel

Base class for symmetric kernels.

is_symmetric()

summed_dist_matrix(vectors, presorted=False)

class TriangularKernel(half_width=array(1.0) * s, normalize=True)
Bases: spykeutils.signal_processing.SymmetricKernel

Unnormalized: K(t) =

{
1− |t|τ , |t| < τ
0, |t| ≥ τ with kernel size τ corresponding to the half width.

Normalized to unit area: K ′(t) = 1
τK(t)

boundary_enclosing_at_least(fraction)

static evaluate(t, half_width)

normalization_factor(half_width)

as_kernel_of_size(obj, kernel_size)
Returns a kernel of desired size.

Parameters

• obj (Kernel or func) – Either an existing kernel or a kernel function. A kernel function takes
two arguments. First a Quantity 1D of evaluation time points and second a kernel size.

5.1. spykeutils package 21

spykeutils Documentation, Release 0.4.0

• kernel_size (Quantity 1D) – Desired size of the kernel.

Returns A Kernel with the desired kernel size. If obj is already a Kernel instance, a shallow
copy of this instance with changed kernel size will be returned. If obj is a function it will be
wrapped in a Kernel instance.

Return type Kernel

discretize_kernel(kernel, sampling_rate, area_fraction=0.99999, num_bins=None, en-
sure_unit_area=False)

Discretizes a kernel.

Parameters

• kernel (Kernel or function) – The kernel or kernel function. If a kernel function is used it
should take exactly one 1-D array as argument.

• area_fraction (float) – Fraction between 0 and 1 (exclusive) of the inte-
gral of the kernel which will be at least covered by the discretization. Will
be ignored if num_bins is not None. If area_fraction is used, the ker-
nel has to provide a method boundary_enclosing_at_least() (see
Kernel.boundary_enclosing_at_least()).

• sampling_rate (Quantity scalar) – Sampling rate for the discretization. The unit will typi-
cally be a frequency unit.

• num_bins (int) – Number of bins to use for the discretization.

• ensure_unit_area (bool) – If True, the area of the discretized kernel will be normalized to
1.0.

Return type Quantity 1D

smooth(binned, kernel, sampling_rate, mode=’same’, **kernel_discretization_params)
Smoothes a binned representation (e.g. of a spike train) by convolving with a kernel.

Parameters

• binned (1-D array) – Bin array to smooth.

• kernel (Kernel) – The kernel instance to convolve with.

• sampling_rate (Quantity scalar) – The sampling rate which will be used to discretize the
kernel. It should be equal to the sampling rate used to obtain binned. The unit will typically
be a frequency unit.

• mode ({‘same’, ‘full’, ‘valid’}) –

– ‘same’: The default which returns an array of the same size as binned

– ‘full’: Returns an array with a bin for each shift where binned and the discretized kernel
overlap by at least one bin.

– ‘valid’: Returns only the discretization bins where the discretized kernel and binned com-
pletely overlap.

See also numpy.convolve.

• kernel_discretization_params (dict) – Additional discretization arguments which will be
passed to discretize_kernel().

Returns The smoothed representation of binned.

Return type Quantity 1D

22 Chapter 5. API reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.4.0

st_convolve(train, kernel, sampling_rate, mode=’same’, binning_params={}, ker-
nel_discretization_params={})

Convolves a neo.core.SpikeTrain with a kernel.

Parameters

• train (neo.core.SpikeTrain) – Spike train to convolve.

• kernel (Kernel) – The kernel instance to convolve with.

• sampling_rate (Quantity scalar) – The sampling rate which will be used to bin the spike
train. The unit will typically be a frequency unit.

• mode ({‘same’, ‘full’, ‘valid’}) –

– ‘same’: The default which returns an array covering the whole duration of the spike train
train.

– ‘full’: Returns an array with additional discretization bins in the beginning and end so
that for each spike the whole discretized kernel is included.

– ‘valid’: Returns only the discretization bins where the discretized kernel and spike train
completely overlap.

See also scipy.signal.convolve().

• binning_params (dict) – Additional discretization arguments which will be passed to
tools.bin_spike_trains().

• kernel_discretization_params (dict) – Additional discretization arguments which will be
passed to discretize_kernel().

Returns The convolved spike train, the boundaries of the discretization bins

Return type (Quantity 1D, Quantity 1D with the inverse units of sampling_rate)

5.1.6 spike_train_generation Module

gen_homogeneous_poisson(rate, t_start=array(0.0) * s, t_stop=None, max_spikes=None, refrac-
tory=array(0.0) * s)

Generate a homogeneous Poisson spike train. The length is controlled with t_stop and max_spikes. Either one
or both of these arguments have to be given.

Parameters

• rate (Quantity scalar) – Average firing rate of the spike train to generate as frequency scalar.

• t_start (Quantity scalar) – Time at which the spike train begins as time scalar. The first
actual spike will be greater than this time.

• t_stop (Quantity scalar) – Time at which the spike train ends as time scalar. All generated
spikes will be lower or equal than this time. If set to None, the number of generated spikes
is controlled by max_spikes and t_stop will be equal to the last generated spike.

• max_spikes – Maximum number of spikes to generate. Fewer spikes might be generated in
case t_stop is also set.

• refractory (Quantity scalar) – Absolute refractory period as time scalar. No spike will
follow another spike for the given duration. Afterwards the firing rate will instantaneously
be set to rate again.

Returns The generated spike train.

Return type neo.core.SpikeTrain

5.1. spykeutils package 23

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html#scipy.signal.convolve
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain

spykeutils Documentation, Release 0.4.0

gen_inhomogeneous_poisson(modulation, max_rate, t_start=array(0.0) * s, t_stop=None,
max_spikes=None, refractory=array(0.0) * s)

Generate an inhomogeneous Poisson spike train. The length is controlled with t_stop and max_spikes. Either
one or both of these arguments have to be given.

Parameters

• modulation (function) – Function f((t1, . . . , tn)) : [t_start, t_end]n → [0, 1]n giving the
instantaneous firing rates at times (t1, . . . , tn) as proportion of max_rate. Thus, a 1-D array
will be passed to the function and it should return an array of the same size.

• max_rate (Quantity scalar) – Maximum firing rate of the spike train to generate as fre-
quency scalar.

• t_start (Quantity scalar) – Time at which the spike train begins as time scalar. The first
actual spike will be greater than this time.

• t_stop (Quantity scalar) – Time at which the spike train ends as time scalar. All generated
spikes will be lower or equal than this time. If set to None, the number of generated spikes
is controlled by max_spikes and t_stop will be equal to the last generated spike.

• refractory (Quantity scalar) – Absolute refractory period as time scalar. No spike will
follow another spike for the given duration. Afterwards the firing rate will instantaneously
be set to rate again.

Returns The generated spike train.

Return type neo.core.SpikeTrain

5.1.7 spike_train_metrics Module

cs_dist(trains, smoothing_filter, sampling_rate, filter_area_fraction=0.99999)
Calculates the Cauchy-Schwarz distance between two spike trains given a smoothing filter.

Let va(t) and vb(t) with t ∈ T be the spike trains convolved with some smoothing filter and V (a, b) =∫
T va(t)vb(t)dt. Then, the Cauchy-Schwarz distance of the spike trains is defined as dCS(a, b) =

arccos V (a,b)2

V (a,a)V (b,b) .

The Cauchy-Schwarz distance is closely related to the Schreiber et al. similarity measure SS by dCS =
arccosS2

S

This function numerically convolves the spike trains with the smoothing filter which can be quite slow and
inaccurate. If the analytical result of the autocorrelation of the smoothing filter is known, one can use
schreiber_similarity() for a more efficient and precise calculation.

Further information can be found in Paiva, A. R. C., Park, I., & Principe, J. (2010). Inner products for represen-
tation and learning in the spike train domain. Statistical Signal Processing for Neuroscience and Neurotechnol-
ogy, Academic Press, New York.

Parameters

• trains (sequence) – Sequence of neo.core.SpikeTrain objects of which the distance
will be calculated pairwise.

• smoothing_filter (signal_processing.Kernel) – Smoothing filter to be convolved
with the spike trains.

• sampling_rate (Quantity scalar) – The sampling rate which will be used to bin the spike
trains as inverse time scalar.

24 Chapter 5. API reference

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain

spykeutils Documentation, Release 0.4.0

• filter_area_fraction (float) – A value between 0 and 1 which controls the interval over
which the smoothing filter will be discretized. At least the given fraction of the complete
smoothing filter area will be covered. Higher values can lead to more accurate results (be-
sides the sampling rate).

Returns Matrix containing the Cauchy-Schwarz distance of all pairs of spike trains

Return type 2-D array

event_synchronization(trains, tau=None, kernel=signal_processing.RectangularKernel(1.0, normal-
ize=False), sort=True)

Calculates the event synchronization.

Let d(x|y) be the count of spikes in y which occur shortly before an event in x with a time difference of less
than τ . Moreover, let nx and ny be the number of total spikes in the spike trains x and y. The event synchrony
is then defined as QT = d(x|y)+d(y|x)√

nxny
.

The time maximum time lag τ can be determined automatically for each pair of spikes txi and tyj by the formula
τij = 1

2 min{txi+1 − txi , txi − txi−1, t
y
j+1 − t

y
j , t

y
j − t

y
j−1}

Further and more detailed information can be found in Quiroga, R. Q., Kreuz, T., & Grassberger, P. (2002).
Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Physical
Review E, 66(4), 041904.

Parameters

• trains (sequence) – Sequence of neo.core.SpikeTrain objects of which the van
Rossum distance will be calculated pairwise.

• tau (Quantity scalar) – The maximum time lag for two spikes to be considered coincident
or synchronous as time scalar. To have it determined automatically by above formula set it
to None.

• kernel (signal_processing.Kernel) – Kernel to use in the calculation of the dis-
tance.

• sort (bool) – Spike trains with sorted spike times are be needed for the calculation. You can
set sort to False if you know that your spike trains are already sorted to decrease calculation
time.

Returns Matrix containing the event synchronization for all pairs of spike trains.

Return type 2-D array

hunter_milton_similarity(trains, tau=array(1.0) * s, kernel=None)
Calculates the Hunter-Milton similarity measure.

If the kernel function is denoted as K(t), a function d(xk) = K(xk − yk′) can be defined with yk′ being the
closest spike in spike train y to the spike xk in spike train x. With this the Hunter-Milton similarity measure is
SH = 1

2

(
1
nx

∑nx

k=1 d(xk) + 1
ny

∑ny

k′=1 d(yk′)
)

.

This implementation returns 0 if one of the spike trains is empty, but 1 if both are empty.

Further information can be found in

•Hunter, J. D., & Milton, J. G. (2003). Amplitude and Frequency Dependence of Spike Timing: Implications
for Dynamic Regulation. Journal of Neurophysiology.

•Dauwels, J., Vialatte, F., Weber, T., & Cichocki, A. (2009). On similarity measures for spike trains. Ad-
vances in Neuro-Information Processing, 177-185.

Parameters

5.1. spykeutils package 25

http://docs.python.org/library/functions.html#float
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.4.0

• trains (sequence) – Sequence of neo.core.SpikeTrain objects of which the Hunter-
Milton similarity will be calculated pairwise.

• tau (Quantity scalar) – The time scale for determining the coincidence of two events as time
scalar.

• kernel (signal_processing.Kernel) – Kernel to use in the calculation of the dis-
tance. If None, a unnormalized Laplacian kernel will be used.

Returns Matrix containing the Hunter-Milton similarity for all pairs of spike trains.

Return type 2-D array

norm_dist(trains, smoothing_filter, sampling_rate, filter_area_fraction=0.99999)
Calculates the norm distance between spike trains given a smoothing filter.

Let va(t) and vb(t) with t ∈ T be the spike trains convolved with some smoothing filter. Then, the norm

distance of the spike trains is defined as dND(a, b) =
√∫
T (va(t)− vb(t))2dt.

Further information can be found in Paiva, A. R. C., Park, I., & Principe, J. (2010). Inner products for represen-
tation and learning in the spike train domain. Statistical Signal Processing for Neuroscience and Neurotechnol-
ogy, Academic Press, New York.

Parameters

• trains (sequence) – Sequence of neo.core.SpikeTrain objects of which the distance
will be calculated pairwise.

• smoothing_filter (signal_processing.Kernel) – Smoothing filter to be convolved
with the spike trains.

• sampling_rate (Quantity scalar) – The sampling rate which will be used to bin the spike
trains as inverse time scalar.

• filter_area_fraction (float) – A value between 0 and 1 which controls the interval over
which the smoothing filter will be discretized. At least the given fraction of the complete
smoothing filter area will be covered. Higher values can lead to more accurate results (be-
sides the sampling rate).

Returns Matrix containing the norm distance of all pairs of spike trains given the smoothing_filter.

Return type Quantity 2D with units depending on the smoothing filter (usually temporal frequency
units)

schreiber_similarity(trains, kernel, sort=True)
Calculates the Schreiber et al. similarity measure between spike trains given a kernel.

Let va(t) and vb(t) with t ∈ T be the spike trains convolved with some smoothing filter and V (a, b) =∫
T va(t)vb(t)dt. The autocorrelation of the smoothing filter corresponds to the kernel used to analytically

calculate the Schreiber et al. similarity measure. It is defined as SS(a, b) = V (a,b)√
V (a,a)V (b,b)

. It is closely related

to the Cauchy-Schwarz distance dCS by SS =
√

cos dCS .

In opposite to cs_dist() which numerically convolves the spike trains with a smoothing filter, this function
directly uses the kernel resulting from the smoothing filter’s autocorrelation. This allows a more accurate and
faster calculation.

Further information can be found in:

•Dauwels, J., Vialatte, F., Weber, T., & Cichocki, A. (2009). On similarity measures for spike trains. Ad-
vances in Neuro-Information Processing, 177-185.

26 Chapter 5. API reference

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#float

spykeutils Documentation, Release 0.4.0

•Paiva, A. R. C., Park, I., & Principe, J. C. (2009). A comparison of binless spike train measures. Neural
Computing and Applications, 19(3), 405-419. doi:10.1007/s00521-009-0307-6

Parameters

• trains (sequence) – Sequence of neo.core.SpikeTrain objects of which the distance
will be calculated pairwise.

• kernel (signal_processing.Kernel) – Kernel to use. It corresponds to a smoothing
filter by being the autocorrelation of such a filter.

• sort (bool) – Spike trains with sorted spike times will be needed for the calculation. You can
set sort to False if you know that your spike trains are already sorted to decrease calculation
time.

Returns Matrix containing the Schreiber et al. similarity measure of all pairs of spike trains.

Return type 2-D array

st_inner(a, b, smoothing_filter, sampling_rate, filter_area_fraction=0.99999)
Calculates the inner product of spike trains given a smoothing filter.

Let va(t) and vb(t) with t ∈ T be the spike trains convolved with some smoothing filter. Then, the inner product
of the spike trains is defined as

∫
T va(t)vb(t)dt.

Further information can be found in Paiva, A. R. C., Park, I., & Principe, J. (2010). Inner products for represen-
tation and learning in the spike train domain. Statistical Signal Processing for Neuroscience and Neurotechnol-
ogy, Academic Press, New York.

Parameters

• a (sequence) – Sequence of neo.core.SpikeTrain objects.

• b (sequence) – Sequence of neo.core.SpikeTrain objects.

• smoothing_filter (signal_processing.Kernel) – A smoothing filter to be con-
volved with the spike trains.

• sampling_rate (Quantity scalar) – The sampling rate which will be used to bin the spike
train as inverse time scalar.

• filter_area_fraction (float) – A value between 0 and 1 which controls the interval over
which the smoothing_filter will be discretized. At least the given fraction of the complete
smoothing_filter area will be covered. Higher values can lead to more accurate results (be-
sides the sampling rate).

Returns Matrix containing the inner product for each pair of spike trains with one spike train from
a and the other one from b.

Return type Quantity 2D with units depending on the smoothing filter (usually temporal frequency
units)

st_norm(train, smoothing_filter, sampling_rate, filter_area_fraction=0.99999)
Calculates the spike train norm given a smoothing filter.

Let v(t) with t ∈ T be a spike train convolved with some smoothing filter. Then, the norm of the spike train is
defined as

∫
T v(t)2dt.

Further information can be found in Paiva, A. R. C., Park, I., & Principe, J. (2010). Inner products for represen-
tation and learning in the spike train domain. Statistical Signal Processing for Neuroscience and Neurotechnol-
ogy, Academic Press, New York.

Parameters

5.1. spykeutils package 27

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#bool
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#float

spykeutils Documentation, Release 0.4.0

• train (neo.core.SpikeTrain) – Spike train of which to calculate the norm.

• smoothing_filter (signal_processing.Kernel) – Smoothing filter to be convolved
with the spike train.

• sampling_rate (Quantity scalar) – The sampling rate which will be used to bin the spike
train as inverse time scalar.

• filter_area_fraction (float) – A value between 0 and 1 which controls the interval over
which the smoothing filter will be discretized. At least the given fraction of the complete
smoothing filter area will be covered. Higher values can lead to more accurate results (be-
sides the sampling rate).

Returns The norm of the spike train given the smoothing_filter.

Return type Quantity scalar with units depending on the smoothing filter (usually temporal fre-
quency units)

van_rossum_dist(trains, tau=array(1.0) * s, kernel=None, sort=True)
Calculates the van Rossum distance.

It is defined as Euclidean distance of the spike trains convolved with a causal decaying exponential smoothing
filter. A detailed description can be found in Rossum, M. C. W. (2001). A novel spike distance. Neural Compu-
tation, 13(4), 751-763. This implementation is normalized to yield a distance of 1.0 for the distance between an
empty spike train and a spike train with a single spike. Divide the result by sqrt(2.0) to get the normalization
used in the cited paper.

Given N spike trains with n spikes on average the run-time complexity of this function is O(N2n2). An
implementation in O(N2n) would be possible but has a high constant factor rendering it slower in practical
cases.

Parameters

• trains (sequence) – Sequence of neo.core.SpikeTrain objects of which the van
Rossum distance will be calculated pairwise.

• tau (Quantity scalar) – Decay rate of the exponential function as time scalar. Controls for
which time scale the metric will be sensitive. This parameter will be ignored if kernel is
not None. May also be scipy.inf which will lead to only measuring differences in spike
count.

• kernel (signal_processing.Kernel) – Kernel to use in the calculation of the dis-
tance. This is not the smoothing filter, but its autocorrelation. If kernel is None, an unnor-
malized Laplacian kernel with a size of tau will be used.

• sort (bool) – Spike trains with sorted spike times might be needed for the calculation. You
can set sort to False if you know that your spike trains are already sorted to decrease calcu-
lation time.

Returns Matrix containing the van Rossum distances for all pairs of spike trains.

Return type 2-D array

van_rossum_multiunit_dist(units, weighting, tau=array(1.0) * s, kernel=None)
Calculates the van Rossum multi-unit distance.

The single-unit distance is defined as Euclidean distance of the spike trains convolved with a causal decaying
exponential smoothing filter. A detailed description can be found in Rossum, M. C. W. (2001). A novel spike
distance. Neural Computation, 13(4), 751-763. This implementation is normalized to yield a distance of 1.0 for
the distance between an empty spike train and a spike train with a single spike. Divide the result by sqrt(2.0) to
get the normalization used in the cited paper.

28 Chapter 5. API reference

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#float
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.4.0

Given the p- and q-th spike train of a and respectively b letRpq be the squared single-unit distance between these

two spike trains. Then the multi-unit distance is
√∑

p(Rpp + c ·
∑
q 6=pRpq) with c being equal to weighting.

The weighting parameter controls the interpolation between a labeled line and a summed population coding.

More information can be found in Houghton, C., & Kreuz, T. (2012). On the efficient calculation of van Rossum
distances. Network: Computation in Neural Systems, 23(1-2), 48-58.

Given N spike trains in total with n spikes on average the run-time complexity of this function is O(N2n2) and
O(N2 +Nn2) memory will be needed.

Parameters

• units (dict) – Dictionary of sequences with each sequence containing the trials of one unit.
Each trial should be a neo.core.SpikeTrain and all units should have the same num-
ber of trials.

• weighting (float) – Controls the interpolation between a labeled line and a summed popula-
tion coding.

• tau (Quantity scalar) – Decay rate of the exponential function as time scalar. Controls for
which time scale the metric will be sensitive. This parameter will be ignored if kernel is
not None. May also be scipy.inf which will lead to only measuring differences in spike
count.

• kernel (signal_processing.Kernel) – Kernel to use in the calculation of the dis-
tance. This is not the smoothing filter, but its autocorrelation. If kernel is None, an unnor-
malized Laplacian kernel with a size of tau will be used.

Returns A 2D array with the multi-unit distance for each pair of trials.

Return type 2D arrary

victor_purpura_dist(trains, q=array(1.0) * Hz, kernel=None, sort=True)
Calculates the Victor-Purpura’s (VP) distance. It is often denoted as Dspike[q].

It is defined as the minimal cost of transforming spike train a into spike train b by using the following operations:

•Inserting or deleting a spike (cost 1.0).

•Shifting a spike from t to t′ (cost q · |t− t′|).

A detailed description can be found in Victor, J. D., & Purpura, K. P. (1996). Nature and precision of temporal
coding in visual cortex: a metric-space analysis. Journal of Neurophysiology.

Given the average number of spikes n in a spike train andN spike trains the run-time complexity of this function
is O(N2n2) and O(N2 + n2) memory will be needed.

Parameters

• trains (sequence) – Sequence of neo.core.SpikeTrain objects of which the distance
will be calculated pairwise.

• q (Quantity scalar) – Cost factor for spike shifts as inverse time scalar. If kernel is not None,
q will be ignored.

• kernel (signal_processing.Kernel) – Kernel to use in the calculation of the dis-
tance. If kernel is None, an unnormalized triangular kernel with a half width of 2.0/q will
be used.

• sort (bool) – Spike trains with sorted spike times will be needed for the calculation. You can
set sort to False if you know that your spike trains are already sorted to decrease calculation
time.

Returns Matrix containing the VP distance of all pairs of spike trains.

5.1. spykeutils package 29

http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#float
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.4.0

Return type 2-D array

victor_purpura_multiunit_dist(units, reassignment_cost, q=array(1.0) * Hz, kernel=None)
Calculates the Victor-Purpura’s (VP) multi-unit distance.

It is defined as the minimal cost of transforming the spike trains a into spike trains b by using the following
operations:

•Inserting or deleting a spike (cost 1.0).

•Shifting a spike from t to t′ (cost q · |t− t′|).

•Moving a spike to another spike train (cost reassignment_cost).

A detailed description can be found in Aronov, D. (2003). Fast algorithm for the metric-space analysis of
simultaneous responses of multiple single neurons. Journal of Neuroscience Methods.

Given the average number of spikes N in a spike train and L units with n spike trains each the run-time com-
plexity is O(n2LNL+1). The space complexity is O(n2 + LNL+1).

For calculating the distance between only two units one should use victor_purpura_dist() which is
more efficient.

Parameters

• units (dict) – Dictionary of sequences with each sequence containing the trials of one unit.
Each trial should be a neo.core.SpikeTrain and all units should have the same num-
ber of trials.

• reassignment_cost (float) – Cost to reassign a spike from one train to another (sometimes
denoted with k). Should be between 0 and 2. For 0 spikes can be reassigned without any
cost, for 2 and above it is cheaper to delete and reinsert a spike.

• q (Quantity scalar) – Cost factor for spike shifts as inverse time scalar. If kernel is not None,
q will be ignored.

• kernel (signal_processing.Kernel) – Kernel to use in the calculation of the dis-
tance. If kernel is None, an unnormalized triangular kernel with a half width of 2.0/q will
be used.

Returns A 2D array with the multi-unit distance for each pair of trials.

Return type 2D arrary

5.1.8 sorting_quality_assesment Module

Functions for estimating the quality of spike sorting results. These functions estimate false positive and false negative
fractions.

calculate_refperiod_fp(num_spikes, refperiod, violations, total_time)
Return the rate of false positives calculated from refractory period calculations for each unit. The equation used
is described in (Hill et al. The Journal of Neuroscience. 2011).

Parameters

• num_spikes (dict) – Dictionary of total number of spikes, indexed by unit.

• refperiod (Quantity scalar) – The refractory period (time). If the spike sorting algorithm
includes a censored period (a time after a spike during which no new spikes can be found),
subtract it from the refractory period before passing it to this function.

• violations (dict) – Dictionary of total number of violations, indexed the same as
num_spikes.

30 Chapter 5. API reference

http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.4.0

• total_time (Quantity scalar) – The total time in which violations could have occured.

Returns A dictionary of false positive rates indexed by unit. Note that values above 0.5 can not be
directly interpreted as a false positive rate! These very high values can e.g. indicate that the
generating processes are not independent.

get_refperiod_violations(spike_trains, refperiod, progress=None)
Return the refractory period violations in the given spike trains for the specified refractory period.

Parameters

• spike_trains (dict) – Dictionary of lists of neo.core.SpikeTrain objects.

• refperiod (Quantity scalar) – The refractory period (time).

• progress (progress_indicator.ProgressIndicator) – Set this parameter to re-
port progress.

Returns

Two values:

• The total number of violations.

• A dictionary (with the same indices as spike_trains) of arrays with violation times
(Quantity 1D with the same unit as refperiod) for each spike train.

Return type int, dict

overlap_fp_fn(spikes, means=None, covariances=None)
Return dicts of tuples (False positive rate, false negative rate) indexed by unit. This function needs sklearn if
covariances is not set to ’white’.

This function estimates the pairwise and total false positive and false negative rates for a number of waveform
clusters. The results can be interpreted as follows: False positives are the fraction of spikes in a cluster that
is estimated to belong to a different cluster (a specific cluster for pairwise results or any other cluster for total
results). False negatives are the number spikes from other clusters that are estimated to belong to a given cluster
(also expressed as fraction, this number can be larger than 1 in extreme cases).

Details for the calculation can be found in (Hill et al. The Journal of Neuroscience. 2011). The calculation for
total false positive and false negative rates does not follow Hill et al., who propose a simple addition of pairwise
probabilities. Instead, the total error probabilities are estimated using all clusters at once.

Parameters

• spikes (dict) – Dictionary, indexed by unit, of lists of spike waveforms as
neo.core.Spike objects or numpy arrays. If the waveforms have multiple channels,
they will be flattened automatically. All waveforms need to have the same number of sam-
ples.

• means (dict) – Dictionary, indexed by unit, of lists of spike waveforms as
neo.core.Spike objects or numpy arrays. Means for units that are not in this dictionary
will be estimated using the spikes. Note that if you pass ’white’ for covariances and
you want to provide means, they have to be whitened in the same way as the spikes. Default:
None, means will be estimated from data.

• covariances (dict or str) – Dictionary, indexed by unit, of lists of covariance matrices. Co-
variances for units that are not in this dictionary will be estimated using the spikes. It is
useful to give a covariance matrix if few spikes are present - consider using the noise co-
variance. If you use prewhitened spikes (i.e. all clusters are normal distributed, so their
covariance matrix is the identity), you can pass ’white’ here. The calculation will be
much faster in this case and the sklearn package is not required. Default: None, covariances
will estimated from data.

5.1. spykeutils package 31

http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike

spykeutils Documentation, Release 0.4.0

Returns

Two values:

• A dictionary (indexed by unit) of total (false positive rate, false negative rate) tuples.

• A dictionary of dictionaries, both indexed by units, of pairwise (false positive rate, false
negative rate) tuples.

Return type dict, dict

variance_explained(spikes, means=None, noise=None)
Returns the fraction of variance in each channel that is explained by the means.

Values below 0 or above 1 for large data sizes indicate that some assumptions were incorrect (e.g. about channel
noise) and the results should not be trusted.

Parameters

• spikes (dict) – Dictionary, indexed by unit, of neo.core.SpikeTrain objects (where
the waveforms member includes the spike waveforms) or lists of neo.core.Spike
objects.

• means (dict) – Dictionary, indexed by unit, of lists of spike waveforms as
neo.core.Spike objects or numpy arrays. Means for units that are not in this dic-
tionary will be estimated using the spikes. Default: None - means will be estimated from
given spikes.

• noise (Quantity 1D) – The known noise levels (as variance) per channel of the original data.
This should be estimated from the signal periods that do not contain spikes, otherwise the
explained variance could be overestimated. If None, the estimate of explained variance is
done without regard for noise. Default: None

Return dict A dictionary of arrays, both indexed by unit. If noise is None, the dictionary contains
the fraction of explained variance per channel without taking noise into account. If noise is
given, it contains the fraction of variance per channel explained by the means and given noise
level together.

5.1.9 stationarity Module

spike_amplitude_histogram(trains, num_bins, uniform_y_scale=True,
unit=UnitQuantity(‘microvolt’, 1e-06 * V, ‘uV’), progress=None)

Return a spike amplitude histogram.

The resulting is useful to assess the drift in spike amplitude over a longer recording. It shows histograms (one
for each trains entry, e.g. segment) of maximum and minimum spike amplitudes.

Parameters

• trains (list) – A list of lists of neo.core.SpikeTrain objects. Each entry of the outer
list will be one point on the x-axis (they could correspond to segments), all amplitude oc-
curences of spikes contained in the inner list will be added up.

• num_bins (int) – Number of bins for the histograms.

• uniform_y_scale (bool) – If True, the histogram for each channel will use the same bins.
Otherwise, the minimum bin range is computed separately for each channel.

• unit (Quantity) – Unit of Y-Axis.

• progress (progress_indicator.ProgressIndicator) – Set this parameter to re-
port progress.

32 Chapter 5. API reference

http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://docs.python.org/library/functions.html#list
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.4.0

Returns

A tuple with three values:

• A three-dimensional histogram matrix, where the first dimension corresponds to bins, the
second dimension to the entries of trains (e.g. segments) and the third dimension to
channels.

• A list of the minimum amplitude value for each channel (all values will be equal if
uniform_y_scale is true).

• A list of the maximum amplitude value for each channel (all values will be equal if
uniform_y_scale is true).

Return type (ndarray, list, list)

5.1.10 tools Module

apply_to_dict(fn, dictionary, *args)
Applies a function to all spike trains in a dictionary of spike train sequences.

Parameters

• fn (function) – Function to apply. Should take a neo.core.SpikeTrain as first argu-
ment.

• dictionary (dict) – Dictionary of sequences of neo.core.SpikeTrain objects to apply
the function to.

• args – Additional arguments which will be passed to fn.

Returns A new dictionary with the same keys as dictionary.

Return type dict

bin_spike_trains(trains, sampling_rate, t_start=None, t_stop=None)
Creates binned representations of spike trains.

Parameters

• trains (dict) – A dictionary of sequences of neo.core.SpikeTrain objects.

• sampling_rate (Quantity scalar) – The sampling rate which will be used to bin the spike
trains as inverse time scalar.

• t_stop (Quantity scalar) – The desired time for the end of the last bin as time scalar. It will
be the maximum stop time of all spike trains if None is passed.

Returns A dictionary (with the same indices as trains) of lists of spike train counts and the bin
borders.

Return type dict, Quantity 1D with time units

concatenate_spike_trains(trains)
Concatenates spike trains.

Parameters trains (sequence) – neo.core.SpikeTrain objects to concatenate.

Returns A spike train consisting of the concatenated spike trains. The spikes will be in the order
of the given spike trains and t_start and t_stop will be set to the minimum and maximum
value.

Return type neo.core.SpikeTrain

5.1. spykeutils package 33

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain

spykeutils Documentation, Release 0.4.0

extract_spikes(train, signals, length, align_time)
Extract spikes with waveforms from analog signals using a spike train. Spikes that are too close to the beginning
or end of the shortest signal to be fully extracted are ignored.

Parameters

• train (neo.core.SpikeTrain) – The spike times.

• signals (sequence) – A sequence of neo.core.AnalogSignal objects from which the
spikes are extracted. The waveforms of the returned spikes are extracted from these signals
in the same order they are given.

• length (Quantity scalar) – The length of the waveform to extract as time scalar.

• align_time (Quantity scalar) – The alignment time of the spike times as time scalar. This is
the time delta from the start of the extracted waveform to the exact time of the spike.

Returns A list of neo.core.Spike objects, one for each time point in train. All returned
spikes include their waveform property.

Return type list

maximum_spike_train_interval(trains, t_start=array(inf) * s, t_stop=array(-inf) * s)
Computes the minimum starting time and maximum end time of all given spike trains. This yields an interval
containing the spikes of all spike trains.

Parameters

• trains (dict) – A dictionary of sequences of neo.core.SpikeTrain objects.

• t_start (Quantity scalar) – Maximum starting time to return.

• t_stop (Quantity scalar) – Minimum end time to return. If None, infinity is used.

Returns Minimum t_start time and maximum t_stop time as time scalars.

Return type Quantity scalar, Quantity scalar

minimum_spike_train_interval(trains, t_start=array(-inf) * s, t_stop=array(inf) * s)
Computes the maximum starting time and minimum end time that all given spike trains share. This yields the
shortest interval shared by all spike trains.

Parameters

• trains (dict) – A dictionary of sequences of neo.core.SpikeTrain objects.

• t_start (Quantity scalar) – Minimal starting time to return.

• t_stop (Quantity scalar) – Maximum end time to return. If None, infinity is used.

Returns Maximum shared t_start time and minimum shared t_stop time as time scalars.

Return type Quantity scalar, Quantity scalar

remove_from_hierarchy(obj, remove_half_orphans=True)
Removes a Neo object from the hierarchy it is embedded in. Mostly downward links are removed (except for
possible links in neo.core.Spike or neo.core.SpikeTrain objects). For example, when obj is a
neo.core.Segment, the link from its parent neo.core.Block will be severed. Also, all links to the
segment from its spikes and spike trains will be severed.

Parameters

• obj (Neo object) – The object to be removed.

• remove_half_orphans (bool) – When True, neo.core.Spike and
neo.core.SpikeTrain belonging to a neo.core.Segment or neo.core.Unit

34 Chapter 5. API reference

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignal
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://docs.python.org/library/stdtypes.html#dict
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Segment
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Block
http://docs.python.org/library/functions.html#bool
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Segment
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Unit

spykeutils Documentation, Release 0.4.0

removed by this function will be removed from the hierarchy as well, even if they are still
linked from a neo.core.Unit or neo.core.Segment, respectively. In this case,
their links to the hierarchy defined by obj will be kept intact.

5.2 Subpackages

5.2.1 spykeutils.plot package

5.2.2 plugin Package

This package provides support for writing plugins for Spyke Viewer. It belongs to spykeutils so that plugins can be
executed in an evironment where the spykeviewer package and its dependencies are not installed (e.g. servers).

spykeutils installs a script named “spykeplugin” that can be used to start plugins directly from the command line,
supplying selection and plugin parameter information. It is also the default script that Spyke Viewer uses when
starting plugins remotely. If you want to implement your own script for starting plugins remotely, e.g. on a server, you
should conform to the interface of this script.

analysis_plugin Module

class AnalysisPlugin
Bases: spykeutils.plugin.gui_data.DataSet

Base class for Analysis plugins. Inherit this class to create a plugin.

The two most important methods are get_name() and start(). Both should be overridden by every plugin.
The class also has functionality for GUI configuration and saving/restoring analysis results.

The GUI configuration uses guidata. Because AnalysisPlugin inherits from DataSet, configuration options
can easily be added directly to the class definition. For example, the following code creates an analysis that has
two configuration options which are used in the start() method to print to the console:

from spykeutils.plugin import analysis_plugin, gui_data

class SamplePlugin(analysis_plugin.AnalysisPlugin):
some_time = gui_data.FloatItem(’Some time’, default=2.0, unit=’ms’)
print_more = gui_data.BoolItem(’Print additional info’, default=True)

def start(self, current, selections):
print ’The selected time is’, self.some_time, ’milliseconds.’
if self.print_more:

print ’This is important additional information!’

The class attribute data_dir contains a base directory for saving and loading data. It is set by Spyke Viewer
to the directory specified in the settings. When using an AnalysisPlugin without Spyke Viewer, the default value
is an empty string (so the current directory will be used) and the attribute can be set to an arbitrary directory.

configure()
Configure the analysis. Override if a different or additional configuration apart from guidata is needed.

get_name()
Return the name of an analysis. Override to specify analysis name.

Returns The name of the plugin.

Return type str

5.2. Subpackages 35

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Unit
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Segment
http://packages.python.org/guidata/index.html#guidata

spykeutils Documentation, Release 0.4.0

get_parameters()
Return a dictionary of the configuration that can be read with deserialize_parameters(). Over-
ride both if non-guidata attributes need to be serialized or if some guidata parameters should not be serial-
ized (e.g. they only affect the visual presentation).

Returns A dictionary of all configuration parameters.

Return type dict

load(name, selections, params=None, consider_guiparams=True)
Return the most recent HDF5 file for a certain parameter configuration. If no such file exists, return None.
This function works with the files created by save().

Parameters

• name (str) – The name of the results to load.

• selections (sequence) – A list of DataProvider objects that are relevant for the analysis
results.

• params (dict) – A dictionary, indexed by strings (which should be valid as python identi-
fiers), with parameters apart from GUI configuration used to obtain the results. All keys
have to be integers, floats, strings or lists of these types.

• consider_guiparams (bool) – Determines if the guidata parameters of the class should be
considered if they exist in the HDF5 file. This should be set to False if save() is used
with save_guiparams set to False.

Returns An open PyTables file object ready to be used to read data. Afterwards, the file has to
be closed by calling the tables.File.close() method. If no appropriate file exists,
None is returned.

Return type tables.File

save(name, selections, params=None, save_guiparams=True)
Return a HDF5 file object with parameters already stored. Save analysis results to this file.

Parameters

• name (str) – The name of the results to save. A folder with this name will be used (and
created if necessary) to store the analysis result files.

• selections (sequence) – A list of DataProvider objects that are relevant for the analysis
results.

• params (dict) – A dictionary, indexed by strings (which should be valid as python identi-
fiers), with parameters apart from GUI configuration used to obtain the results. All keys
have to be integers, floats, strings or lists of these types.

• save_guiparams (bool) – Determines if the guidata parameters of the class should be
saved in the file.

Returns An open PyTables file object ready to be used to store data. Afterwards, the file has to
be closed by calling the tables.File.close() method.

Return type tables.File

set_parameters(parameters)
Load configuration from a dictionary that has been created by serialize_parameters(). Parame-
ters that are not part of the guidata attributes of the plugin are ignored. Override if non-guidata attributes
need to be serialized.

Parameters parameters (dict) – A dictionary of all configuration parameters.

36 Chapter 5. API reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict

spykeutils Documentation, Release 0.4.0

start(current, selections)
Entry point for processing. Override with analysis code.

Parameters

• current (spykeviewer.plugin_framework.data_provider.DataProvider)
– This data provider is used if the analysis should be performed on the data currently
selected in the GUI.

• selections (list) – This parameter contains all saved selections. It is used if an analysis
needs multiple data sets.

data_provider Module

class DataProvider(name, progress)
Bases: object

Defines all methods that should be implemented by a selection/data provider class.

A DataProvider encapsulates access to a selection of data. It can be used by plugins to acesss
data currently selected in the GUI or in saved selections. It also contains an attribute progress, a
spykeutils.progress_indicator.ProgressIndicator that can be used to report the progress
of an operation (and is used by methods of this class if they can lead to processing times of half a second or
more).

This class serves as an abstract base class and should not be instantiated.

analog_signal_arrays()
Return a list of neo.core.AnalogSignalArray objects.

analog_signal_arrays_by_channelgroup()
Return a dictionary (indexed by RecordingChannelGroup) of lists of
neo.core.AnalogSignalArray objects.

If analog signals arrays not attached to a RecordingChannel are selected, their dictionary key will be
DataProvider.no_channelgroup.

analog_signal_arrays_by_channelgroup_and_segment()
Return a dictionary (indexed by RecordingChannelGroup) of dictionaries (indexed by Segment) of
neo.core.AnalogSignalArray objects.

If there are multiple analog signals in one RecordingChannel for the same Segment, only the first
will be contained in the returned dictionary. If analog signal arrays not attached to a Segment or
RecordingChannelGroup are selected, their dictionary key will be DataProvider.no_segment or
DataProvider.no_channelgroup, respectively.

analog_signal_arrays_by_segment()
Return a dictionary (indexed by Segment) of lists of neo.core.AnalogSignalArray objects.

If analog signals arrays not attached to a Segment are selected, their dictionary key will be
DataProvider.no_segment.

analog_signal_arrays_by_segment_and_channelgroup()
Return a dictionary (indexed by RecordingChannelGroup) of dictionaries (indexed by Segment) of
neo.core.AnalogSignalArray objects.

If there are multiple analog signals in one RecordingChannel for the same Segment, only the first
will be contained in the returned dictionary. If analog signal arrays not attached to a Segment or
RecordingChannelGroup are selected, their dictionary key will be DataProvider.no_segment or
DataProvider.no_channelgroup, respectively.

5.2. Subpackages 37

http://docs.python.org/library/functions.html#list
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignalArray
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignalArray
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignalArray
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignalArray
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignalArray

spykeutils Documentation, Release 0.4.0

analog_signals(conversion_mode=1)
Return a list of neo.core.AnalogSignal objects.

Parameters conversion_mode (int) – Determines what signals are returned:

1. AnalogSignal objects only

2. AnalogSignal objects extracted from AnalogSignalArrays only

3. Both AnalogSignal objects and extracted AnalogSignalArrays

analog_signals_by_channel(conversion_mode=1)
Return a dictionary (indexed by RecordingChannel) of lists of neo.core.AnalogSignal objects.

If analog signals not attached to a RecordingChannel are selected, their dictionary key will be
DataProvider.no_channel.

Parameters conversion_mode (int) – Determines what signals are returned:

1. AnalogSignal objects only

2. AnalogSignal objects extracted from AnalogSignalArrays only

3. Both AnalogSignal objects and extracted AnalogSignalArrays

analog_signals_by_channel_and_segment(conversion_mode=1)
Return a dictionary (indexed by RecordingChannel) of dictionaries (indexed by Segment) of
neo.core.AnalogSignal lists.

If analog signals not attached to a Segment or RecordingChannel are selected, their dictionary key will be
DataProvider.no_segment or DataProvider.no_channel, respectively.

Parameters conversion_mode (int) – Determines what signals are returned:

1. AnalogSignal objects only

2. AnalogSignal objects extracted from AnalogSignalArrays only

3. Both AnalogSignal objects and extracted AnalogSignalArrays

analog_signals_by_segment(conversion_mode=1)
Return a dictionary (indexed by Segment) of lists of neo.core.AnalogSignal objects.

If analog signals not attached to a Segment are selected, their dictionary key will be
DataProvider.no_segment.

Parameters conversion_mode (int) – Determines what signals are returned:

1. AnalogSignal objects only

2. AnalogSignal objects extracted from AnalogSignalArrays only

3. Both AnalogSignal objects and extracted AnalogSignalArrays

analog_signals_by_segment_and_channel(conversion_mode=1)
Return a dictionary (indexed by Segment) of dictionaries (indexed by RecordingChannel) of
neo.core.AnalogSignal lists.

If analog signals not attached to a Segment or RecordingChannel are selected, their dictionary key will be
DataProvider.no_segment or DataProvider.no_channel, respectively.

Parameters conversion_mode (int) – Determines what signals are returned:

1. AnalogSignal objects only

2. AnalogSignal objects extracted from AnalogSignalArrays only

3. Both AnalogSignal objects and extracted AnalogSignalArrays

38 Chapter 5. API reference

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignal
http://docs.python.org/library/functions.html#int
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignal
http://docs.python.org/library/functions.html#int
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignal
http://docs.python.org/library/functions.html#int
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignal
http://docs.python.org/library/functions.html#int
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.AnalogSignal
http://docs.python.org/library/functions.html#int

spykeutils Documentation, Release 0.4.0

blocks()
Return a list of selected Block objects.

The returned objects will contain all regular references, not just to selected objects.

data_dict()
Return a dictionary with all information to serialize the object.

epoch_arrays()
Return a dictionary (indexed by Segment) of lists of EpochArray objects.

epochs(include_array_epochs=True)
Return a dictionary (indexed by Segment) of lists of Epoch objects.

Parameters include_array_epochs (bool) – Determines if EpochArray objects should be con-
verted to Epoch objects and included in the returned list.

event_arrays()
Return a dictionary (indexed by Segment) of lists of EventArray objects.

events(include_array_events=True)
Return a dictionary (indexed by Segment) of lists of Event objects.

Parameters include_array_events (bool) – Determines if EventArray objects should be con-
verted to Event objects and included in the returned list.

classmethod from_data(data, progress=None)
Create a new DataProvider object from a dictionary. This method is mostly for internal use.

The respective type of DataProvider (e.g. spykeviewer.plugin_framework.data_provider_neo.DataProviderNeo
has to be imported in the environment where this function is called.

Parameters

• data (dict) – A dictionary containing data from a DataProvider object, as returned by
data_dict().

• progress (ProgressIndicator) – The object where loading progress will be indicated.

labeled_epochs(label, include_array_epochs=True)
Return a dictionary (indexed by Segment) of lists of Epoch objects with the given label.

Parameters

• label (str) – The name of the Epoch objects to be returnded

• include_array_epochs (bool) – Determines if EpochArray objects should be converted to
Epoch objects and included in the returned list.

labeled_events(label, include_array_events=True)
Return a dictionary (indexed by Segment) of lists of Event objects with the given label.

Parameters

• label (str) – The name of the Event objects to be returnded

• include_array_events (bool) – Determines if EventArray objects should be converted to
Event objects and included in the returned list.

recording_channel_groups()
Return a list of selected RecordingChannelGroup objects.

The returned objects will contain all regular references, not just to selected objects.

5.2. Subpackages 39

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool

spykeutils Documentation, Release 0.4.0

recording_channels()
Return a list of selected RecordingChannel objects.

The returned objects will contain all regular references, not just to selected objects.

refresh_view()
Refresh associated views of the data.

Use this method if when you change the neo hierarchy on which the selection is based (e.g. adding or
removing objects). It will ensure that all current views on the data are updated, for example in Spyke
Viewer.

segments()
Return a list of selected Segment objects.

The returned objects will contain all regular references, not just to selected objects.

selection_blocks()
Return a list of selected blocks.

The returned blocks will contain references to all other selected elements further down in the object hier-
archy, but no references to elements which are not selected. The returned hierarchy is a copy, so changes
made to it will not persist. The main purpose of this function is to provide an object hierarchy that can be
saved to a neo file. It is not recommended to use it for data processing, the respective functions that return
objects lower in the hierarchy are better suited for that purpose.

spike_trains()
Return a list of neo.core.SpikeTrain objects.

spike_trains_by_segment()
Return a dictionary (indexed by Segment) of lists of neo.core.SpikeTrain objects.

If spike trains not attached to a Segment are selected, their dictionary key will be
DataProvider.no_segment.

spike_trains_by_segment_and_unit()
Return a dictionary (indexed by Unit) of dictionaries (indexed by Segment) of neo.core.SpikeTrain
objects.

If there are multiple spike trains in one Segment for the same Unit, only the first will be contained in the
returned dictionary. If spike trains not attached to a Unit or Segment are selected, their dictionary key will
be DataProvider.no_unit or DataProvider.no_segment, respectively.

spike_trains_by_unit()
Return a dictionary (indexed by Unit) of lists of neo.core.SpikeTrain objects.

If spike trains not attached to a Unit are selected, their dicionary key will be DataProvider.no_unit.

spike_trains_by_unit_and_segment()
Return a dictionary (indexed by Unit) of dictionaries (indexed by Segment) of neo.core.SpikeTrain
objects.

If there are multiple spike trains in one Segment for the same Unit, only the first will be contained in the
returned dictionary. If spike trains not attached to a Unit or Segment are selected, their dictionary key will
be DataProvider.no_unit or DataProvider.no_segment, respectively.

spikes()
Return a list of neo.core.Spike objects.

spikes_by_segment()
Return a dictionary (indexed by Segment) of lists of neo.core.Spike objects.

40 Chapter 5. API reference

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.SpikeTrain
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike

spykeutils Documentation, Release 0.4.0

If spikes not attached to a Segment are selected, their dictionary key will be
DataProvider.no_segment.

spikes_by_segment_and_unit()
Return a dictionary (indexed by Segment) of dictionaries (indexed by Unit) of lists of neo.core.Spike
lists.

If spikes not attached to a Unit or Segment are selected, their dictionary key will be
DataProvider.no_unit or DataProvider.no_segment, respectively.

spikes_by_unit()
Return a dictionary (indexed by Unit) of lists of neo.core.Spike objects.

If spikes not attached to a Unit are selected, their dicionary key will be DataProvider.no_unit.

spikes_by_unit_and_segment()
Return a dictionary (indexed by Unit) of dictionaries (indexed by Segment) of neo.core.Spike lists.

If there are multiple spikes in one Segment for the same Unit, only the first will be contained in the
returned dictionary. If spikes not attached to a Unit or Segment are selected, their dictionary key will be
DataProvider.no_unit or DataProvider.no_segment, respectively.

units()
Return a list of selected Unit objects.

The returned objects will contain all regular references, not just to selected objects.

gui_data Module

This module gives access to all members of guidata.dataset.dataitems and
guidata.dataset.datatypes. If guidata cannot be imported, the module offers suitable dummy
objects instead (e.g. for use on a server).

5.2. Subpackages 41

http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://neo.readthedocs.org/en/latest/api_reference.html#neo.core.Spike
http://packages.python.org/guidata/reference.html#guidata.dataset.dataitems
http://packages.python.org/guidata/reference.html#guidata.dataset.datatypes
http://packages.python.org/guidata/index.html#guidata

spykeutils Documentation, Release 0.4.0

42 Chapter 5. API reference

CHAPTER

SIX

CHANGELOG

6.1 Version 0.4.0

• Correlogram plot supports new square plot matrix mode and count per second in addition to per segment.

• New options in spike waveform plot.

• DataProvider objects support transparent lazy loading for compatible IOs (currently only Hdf5IO).

• DataProvider can be forced to use a certain IO instead of automatically determining it by file extension.

• Load parameters for IOs can be specified in DataProvider.

• IO class, IO parameters and IO plugins are saved in selections and properly used in startplugin.py

• Qt implementation of ProgressBar available in plot.helper (moved from Spyke Viewer).

• Loading support for IO plugins (moved from Spyke Viewer).

6.2 Version 0.3.0

• Added implementations for various spike train metrics.

• Added generation functions for poisson spike trains

• Added tools module with various utility functions, e.g. binning spike trains or removing objects from Neo
hierarchies.

• Added explained variance function to spike sorting quality assessment.

• Improved legends for plots involving colored lines.

• Plots now have a minimum size and scroll bars appear if the plots would become too small.

• Renamed plot.ISI to plot.isi for consistency

6.3 Version 0.2.1

• Added “Home” and “Pan” tools for plots (useful when no middle mouse button is available).

• Changed default grid in plots to show only major grid.

• Added a method to DataProvider for refreshing views after object hierarchy changed.

43

spykeutils Documentation, Release 0.4.0

• New parameter for DataProvider AnalogSignal methods: AnalogSignalArrays can be automatically converted
and returned.

• Significantly improved speed of spike density estimation and optimal kernel size calculation.

• Spike sorting quality assessment using gaussian clusters is now possible without prewhitening spikes or provid-
ing prewhitened means.

• Renamed “spyke-plugin” script to “spykeplugin”

6.4 Version 0.2.0

Initial documented public release.

44 Chapter 6. Changelog

CHAPTER

SEVEN

ACKNOWLEDGEMENTS

spykeutils was created by Robert Pröpper 1, supported by the Research Training Group GRK 1589/1. Jan Gosmann 2

contributed and tested the spike train metric implementations.

1 Neural Information Processing Group, TU Berlin
2 Bernstein Center for Computational Neuroscience, Berlin

45

spykeutils Documentation, Release 0.4.0

46 Chapter 7. Acknowledgements

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

47

spykeutils Documentation, Release 0.4.0

48 Chapter 8. Indices and tables

PYTHON MODULE INDEX

s
spykeutils, ??
spykeutils.conversions, ??
spykeutils.correlations, ??
spykeutils.plugin, ??
spykeutils.plugin.analysis_plugin, ??
spykeutils.plugin.data_provider, ??
spykeutils.plugin.gui_data, ??
spykeutils.progress_indicator, ??
spykeutils.rate_estimation, ??
spykeutils.signal_processing, ??
spykeutils.sorting_quality_assesment,

??
spykeutils.spike_train_generation, ??
spykeutils.spike_train_metrics, ??
spykeutils.stationarity, ??
spykeutils.tools, ??

49

